IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49365-z.html
   My bibliography  Save this article

Enhanced eMAGE applied to identify genetic factors of nuclear hormone receptor dysfunction via combinatorial gene editing

Author

Listed:
  • Peter N. Ciaccia

    (Yale University
    Yale University
    Yale University)

  • Zhuobin Liang

    (Yale University
    Yale University
    Shenzhen Bay Laboratory)

  • Anabel Y. Schweitzer

    (Yale University
    Yale University)

  • Eli Metzner

    (Yale University
    Yale University)

  • Farren J. Isaacs

    (Yale University
    Yale University
    Yale University
    Yale University)

Abstract

Technologies that generate precise combinatorial genome modifications are well suited to dissect the polygenic basis of complex phenotypes and engineer synthetic genomes. Genome modifications with engineered nucleases can lead to undesirable repair outcomes through imprecise homology-directed repair, requiring non-cleavable gene editing strategies. Eukaryotic multiplex genome engineering (eMAGE) generates precise combinatorial genome modifications in Saccharomyces cerevisiae without generating DNA breaks or using engineered nucleases. Here, we systematically optimize eMAGE to achieve 90% editing frequency, reduce workflow time, and extend editing distance to 20 kb. We further engineer an inducible dominant negative mismatch repair system, allowing for high-efficiency editing via eMAGE while suppressing the elevated background mutation rate 17-fold resulting from mismatch repair inactivation. We apply these advances to construct a library of cancer-associated mutations in the ligand-binding domains of human estrogen receptor alpha and progesterone receptor to understand their impact on ligand-independent autoactivation. We validate that this yeast model captures autoactivation mutations characterized in human breast cancer models and further leads to the discovery of several previously uncharacterized autoactivating mutations. This work demonstrates the development and optimization of a cleavage-free method of genome editing well suited for applications requiring efficient multiplex editing with minimal background mutations.

Suggested Citation

  • Peter N. Ciaccia & Zhuobin Liang & Anabel Y. Schweitzer & Eli Metzner & Farren J. Isaacs, 2024. "Enhanced eMAGE applied to identify genetic factors of nuclear hormone receptor dysfunction via combinatorial gene editing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49365-z
    DOI: 10.1038/s41467-024-49365-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49365-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49365-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicholas S. McCarty & Alicia E. Graham & Lucie Studená & Rodrigo Ledesma-Amaro, 2020. "Multiplexed CRISPR technologies for gene editing and transcriptional regulation," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Shakked O. Halperin & Connor J. Tou & Eric B. Wong & Cyrus Modavi & David V. Schaffer & John E. Dueber, 2018. "CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window," Nature, Nature, vol. 560(7717), pages 248-252, August.
    3. Andrew V. Anzalone & Peyton B. Randolph & Jessie R. Davis & Alexander A. Sousa & Luke W. Koblan & Jonathan M. Levy & Peter J. Chen & Christopher Wilson & Gregory A. Newby & Aditya Raguram & David R. L, 2019. "Search-and-replace genome editing without double-strand breaks or donor DNA," Nature, Nature, vol. 576(7785), pages 149-157, December.
    4. Sanne E. Klompe & Phuc L. H. Vo & Tyler S. Halpin-Healy & Samuel H. Sternberg, 2019. "Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration," Nature, Nature, vol. 571(7764), pages 219-225, July.
    5. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qichen Yuan & Xue Gao, 2022. "Multiplex base- and prime-editing with drive-and-process CRISPR arrays," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Yuting Chen & Eriona Hysolli & Anlu Chen & Stephen Casper & Songlei Liu & Kevin Yang & Chenli Liu & George Church, 2022. "Multiplex base editing to convert TAG into TAA codons in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Daphne Collias & Elena Vialetto & Jiaqi Yu & Khoa Co & Éva d. H. Almási & Ann-Sophie Rüttiger & Tatjana Achmedov & Till Strowig & Chase L. Beisel, 2023. "Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Guiquan Zhang & Yao Liu & Shisheng Huang & Shiyuan Qu & Daolin Cheng & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Xingxu Huang & Jianghuai Liu, 2022. "Enhancement of prime editing via xrRNA motif-joined pegRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Huawei Tong & Haoqiang Wang & Xuchen Wang & Nana Liu & Guoling Li & Danni Wu & Yun Li & Ming Jin & Hengbin Li & Yinghui Wei & Tong Li & Yuan Yuan & Linyu Shi & Xuan Yao & Yingsi Zhou & Hui Yang, 2024. "Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Kun Jia & Yan-ru Cui & Shisheng Huang & Peihong Yu & Zhengxing Lian & Peixiang Ma & Jia Liu, 2022. "Phage peptides mediate precision base editing with focused targeting window," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Anna Zimmermann & Julian E. Prieto-Vivas & Charlotte Cautereels & Anton Gorkovskiy & Jan Steensels & Yves Peer & Kevin J. Verstrepen, 2023. "A Cas3-base editing tool for targetable in vivo mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Yi-Li Feng & Qian Liu & Ruo-Dan Chen & Si-Cheng Liu & Zhi-Cheng Huang & Kun-Ming Liu & Xiao-Ying Yang & An-Yong Xie, 2022. "DNA nicks induce mutational signatures associated with BRCA1 deficiency," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Marion Rosello & Malo Serafini & Luca Mignani & Dario Finazzi & Carine Giovannangeli & Marina C. Mione & Jean-Paul Concordet & Filippo Del Bene, 2022. "Disease modeling by efficient genome editing using a near PAM-less base editor in vivo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    16. Guanhua Xun & Zhixin Zhu & Nilmani Singh & Jingxia Lu & Piyush K. Jain & Huimin Zhao, 2024. "Harnessing noncanonical crRNA for highly efficient genome editing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. J. Ferreira da Silva & G. P. Oliveira & E. A. Arasa-Verge & C. Kagiou & A. Moretton & G. Timelthaler & J. Jiricny & J. I. Loizou, 2022. "Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Ju-Chan Park & Yun-Jeong Kim & Gue-Ho Hwang & Chan Young Kang & Sangsu Bae & Hyuk-Jin Cha, 2024. "Enhancing genome editing in hPSCs through dual inhibition of DNA damage response and repair pathways," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Mu Li & Aaron Zhong & Youjun Wu & Mega Sidharta & Michael Beaury & Xiaolan Zhao & Lorenz Studer & Ting Zhou, 2022. "Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Friedrich Fauser & Bhakti N. Kadam & Sebastian Arangundy-Franklin & Jessica E. Davis & Vishvesha Vaidya & Nicola J. Schmidt & Garrett Lew & Danny F. Xia & Rakshaa Mureli & Colman Ng & Yuanyue Zhou & N, 2024. "Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49365-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.