IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i3p487-d1358721.html
   My bibliography  Save this article

Progress in Research and Prospects for Application of Precision Gene-Editing Technology Based on CRISPR–Cas9 in the Genetic Improvement of Sheep and Goats

Author

Listed:
  • Zeyu Lu

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Lingtian Zhang

    (Cofco Jia Jia Kang Food Co., Ltd., Songyuan City 131500, China)

  • Qing Mu

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Junyang Liu

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Yu Chen

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Haoyuan Wang

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Yanjun Zhang

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Rui Su

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Ruijun Wang

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Zhiying Wang

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Qi Lv

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Zhihong Liu

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Jiasen Liu

    (Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China)

  • Yunhua Li

    (Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China)

  • Yanhong Zhao

    (Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
    Inner Mongolia Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot 010018, China
    College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China)

Abstract

Due to recent innovations in gene editing technology, great progress has been made in livestock breeding, with researchers rearing gene-edited pigs, cattle, sheep, and other livestock. Gene-editing technology involves knocking in, knocking out, deleting, inhibiting, activating, or replacing specific bases of DNA or RNA sequences at the genome level for accurate modification, and such processes can edit genes at a fixed point without needing DNA templates. In recent years, although clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system-mediated gene-editing technology has been widely used in research into the genetic breeding of animals, the system’s efficiency at inserting foreign genes is not high enough, and there are certain off-target effects; thus, it is not appropriate for use in the genome editing of large livestock such as cashmere goats. In this study, the development status, associated challenges, application prospects, and future prospects of CRISPR/Cas9-mediated precision gene-editing technology for use in livestock breeding were reviewed to provide a theoretical reference for livestock gene function analysis, genetic improvement, and livestock breeding that account for characteristics of local economies.

Suggested Citation

  • Zeyu Lu & Lingtian Zhang & Qing Mu & Junyang Liu & Yu Chen & Haoyuan Wang & Yanjun Zhang & Rui Su & Ruijun Wang & Zhiying Wang & Qi Lv & Zhihong Liu & Jiasen Liu & Yunhua Li & Yanhong Zhao, 2024. "Progress in Research and Prospects for Application of Precision Gene-Editing Technology Based on CRISPR–Cas9 in the Genetic Improvement of Sheep and Goats," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:487-:d:1358721
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/3/487/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/3/487/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johnny H. Hu & Shannon M. Miller & Maarten H. Geurts & Weixin Tang & Liwei Chen & Ning Sun & Christina M. Zeina & Xue Gao & Holly A. Rees & Zhi Lin & David R. Liu, 2018. "Evolved Cas9 variants with broad PAM compatibility and high DNA specificity," Nature, Nature, vol. 556(7699), pages 57-63, April.
    2. Jack P. K. Bravo & Mu-Sen Liu & Grace N. Hibshman & Tyler L. Dangerfield & Kyungseok Jung & Ryan S. McCool & Kenneth A. Johnson & David W. Taylor, 2022. "Structural basis for mismatch surveillance by CRISPR–Cas9," Nature, Nature, vol. 603(7900), pages 343-347, March.
    3. Andrew V. Anzalone & Peyton B. Randolph & Jessie R. Davis & Alexander A. Sousa & Luke W. Koblan & Jonathan M. Levy & Peter J. Chen & Christopher Wilson & Gregory A. Newby & Aditya Raguram & David R. L, 2019. "Search-and-replace genome editing without double-strand breaks or donor DNA," Nature, Nature, vol. 576(7785), pages 149-157, December.
    4. Alexis C. Komor & Yongjoo B. Kim & Michael S. Packer & John A. Zuris & David R. Liu, 2016. "Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage," Nature, Nature, vol. 533(7603), pages 420-424, May.
    5. Nicole M. Gaudelli & Alexis C. Komor & Holly A. Rees & Michael S. Packer & Ahmed H. Badran & David I. Bryson & David R. Liu, 2017. "Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage," Nature, Nature, vol. 551(7681), pages 464-471, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luke Hoberecht & Pirunthan Perampalam & Aaron Lun & Jean-Philippe Fortin, 2022. "A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Marion Rosello & Malo Serafini & Luca Mignani & Dario Finazzi & Carine Giovannangeli & Marina C. Mione & Jean-Paul Concordet & Filippo Del Bene, 2022. "Disease modeling by efficient genome editing using a near PAM-less base editor in vivo," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Jaesuk Lee & Kayeong Lim & Annie Kim & Young Geun Mok & Eugene Chung & Sung-Ik Cho & Ji Min Lee & Jin-Soo Kim, 2023. "Prime editing with genuine Cas9 nickases minimizes unwanted indels," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Chao Yang & Zhenzhen Ma & Keshan Wang & Xingxiao Dong & Meiyu Huang & Yaqiu Li & Xiagu Zhu & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Lin Zhao & Sabrina R. T. Koseki & Rachel A. Silverstein & Nadia Amrani & Christina Peng & Christian Kramme & Natasha Savic & Martin Pacesa & Tomás C. Rodríguez & Teodora Stan & Emma Tysinger & Lauren , 2023. "PAM-flexible genome editing with an engineered chimeric Cas9," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Jeonghun Kwon & Minyoung Kim & Seungmin Bae & Anna Jo & Youngho Kim & Jungjoon K. Lee, 2022. "TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Dominique L. Brooks & Manuel J. Carrasco & Ping Qu & William H. Peranteau & Rebecca C. Ahrens-Nicklas & Kiran Musunuru & Mohamad-Gabriel Alameh & Xiao Wang, 2023. "Rapid and definitive treatment of phenylketonuria in variant-humanized mice with corrective editing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Daphne Collias & Elena Vialetto & Jiaqi Yu & Khoa Co & Éva d. H. Almási & Ann-Sophie Rüttiger & Tatjana Achmedov & Till Strowig & Chase L. Beisel, 2023. "Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Dmitrii Degtev & Jack Bravo & Aikaterini Emmanouilidi & Aleksandar Zdravković & Oi Kuan Choong & Julia Liz Touza & Niklas Selfjord & Isabel Weisheit & Margherita Francescatto & Pinar Akcakaya & Michel, 2024. "Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Maarten H. Geurts & Shashank Gandhi & Matteo G. Boretto & Ninouk Akkerman & Lucca L. M. Derks & Gijs Son & Martina Celotti & Sarina Harshuk-Shabso & Flavia Peci & Harry Begthel & Delilah Hendriks & Pa, 2023. "One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Chengdong Zhang & Yuan Yang & Tao Qi & Yuening Zhang & Linghui Hou & Jingjing Wei & Jingcheng Yang & Leming Shi & Sang-Ging Ong & Hongyan Wang & Hui Wang & Bo Yu & Yongming Wang, 2023. "Prediction of base editor off-targets by deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Guiquan Zhang & Yao Liu & Shisheng Huang & Shiyuan Qu & Daolin Cheng & Yuan Yao & Quanjiang Ji & Xiaolong Wang & Xingxu Huang & Jianghuai Liu, 2022. "Enhancement of prime editing via xrRNA motif-joined pegRNA," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Ronghao Chen & Yu Cao & Yajing Liu & Dongdong Zhao & Ju Li & Zhihui Cheng & Changhao Bi & Xueli Zhang, 2023. "Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Zhaohui Zhong & Guanqing Liu & Zhongjie Tang & Shuyue Xiang & Liang Yang & Lan Huang & Yao He & Tingting Fan & Shishi Liu & Xuelian Zheng & Tao Zhang & Yiping Qi & Jian Huang & Yong Zhang, 2023. "Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Qichen Yuan & Xue Gao, 2022. "Multiplex base- and prime-editing with drive-and-process CRISPR arrays," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Huawei Tong & Haoqiang Wang & Xuchen Wang & Nana Liu & Guoling Li & Danni Wu & Yun Li & Ming Jin & Hengbin Li & Yinghui Wei & Tong Li & Yuan Yuan & Linyu Shi & Xuan Yao & Yingsi Zhou & Hui Yang, 2024. "Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Kun Jia & Yan-ru Cui & Shisheng Huang & Peihong Yu & Zhengxing Lian & Peixiang Ma & Jia Liu, 2022. "Phage peptides mediate precision base editing with focused targeting window," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Xiangfeng Kong & Hainan Zhang & Guoling Li & Zikang Wang & Xuqiang Kong & Lecong Wang & Mingxing Xue & Weihong Zhang & Yao Wang & Jiajia Lin & Jingxing Zhou & Xiaowen Shen & Yinghui Wei & Na Zhong & W, 2023. "Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:487-:d:1358721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.