IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02572-3.html
   My bibliography  Save this article

An artificial nociceptor based on a diffusive memristor

Author

Listed:
  • Jung Ho Yoon

    (University of Massachusetts)

  • Zhongrui Wang

    (University of Massachusetts)

  • Kyung Min Kim

    (Hewlett Packard Labs)

  • Huaqiang Wu

    (Tsinghua University)

  • Vignesh Ravichandran

    (University of Massachusetts)

  • Qiangfei Xia

    (University of Massachusetts)

  • Cheol Seong Hwang

    (Seoul National University)

  • J. Joshua Yang

    (University of Massachusetts)

Abstract

A nociceptor is a critical and special receptor of a sensory neuron that is able to detect noxious stimulus and provide a rapid warning to the central nervous system to start the motor response in the human body and humanoid robotics. It differs from other common sensory receptors with its key features and functions, including the “no adaptation” and “sensitization” phenomena. In this study, we propose and experimentally demonstrate an artificial nociceptor based on a diffusive memristor with critical dynamics for the first time. Using this artificial nociceptor, we further built an artificial sensory alarm system to experimentally demonstrate the feasibility and simplicity of integrating such novel artificial nociceptor devices in artificial intelligence systems, such as humanoid robots.

Suggested Citation

  • Jung Ho Yoon & Zhongrui Wang & Kyung Min Kim & Huaqiang Wu & Vignesh Ravichandran & Qiangfei Xia & Cheol Seong Hwang & J. Joshua Yang, 2018. "An artificial nociceptor based on a diffusive memristor," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02572-3
    DOI: 10.1038/s41467-017-02572-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02572-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02572-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengbo Wang & Shuo Gao & Chenyu Tang & Edoardo Occhipinti & Cong Li & Shurui Wang & Jiaqi Wang & Hubin Zhao & Guohua Hu & Arokia Nathan & Ravinder Dahiya & Luigi Giuseppe Occhipinti, 2024. "Memristor-based adaptive neuromorphic perception in unstructured environments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Kyung Seok Woo & Janguk Han & Su-in Yi & Luke Thomas & Hyungjun Park & Suhas Kumar & Cheol Seong Hwang, 2024. "Tunable stochastic memristors for energy-efficient encryption and computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Rui Yuan & Qingxi Duan & Pek Jun Tiw & Ge Li & Zhuojian Xiao & Zhaokun Jing & Ke Yang & Chang Liu & Chen Ge & Ru Huang & Yuchao Yang, 2022. "A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02572-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.