IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v560y2018i7719d10.1038_s41586-018-0420-8.html
   My bibliography  Save this article

Cryo-EM structure of the insect olfactory receptor Orco

Author

Listed:
  • Joel A. Butterwick

    (The Rockefeller University)

  • Josefina Mármol

    (The Rockefeller University)

  • Kelly H. Kim

    (The Rockefeller University)

  • Martha A. Kahlson

    (The Rockefeller University)

  • Jackson A. Rogow

    (The Rockefeller University)

  • Thomas Walz

    (The Rockefeller University)

  • Vanessa Ruta

    (The Rockefeller University)

Abstract

The olfactory system must recognize and discriminate amongst an enormous variety of chemicals in the environment. To contend with such diversity, insects have evolved a family of odorant-gated ion channels comprised of a highly conserved co-receptor (Orco) and a divergent odorant receptor (OR) that confers chemical specificity. Here, we present the single-particle cryo-electron microscopy structure of an Orco homomer from the parasitic fig wasp Apocrypta bakeri at 3.5 Å resolution, providing structural insight into this receptor family. Orco possesses a novel channel architecture, with four subunits symmetrically arranged around a central pore that diverges into four lateral conduits that open to the cytosol. The Orco tetramer has few inter-subunit interactions within the membrane and is bound together by a small cytoplasmic anchor domain. The minimal sequence conservation among ORs maps largely to the pore and anchor domain, shedding light on how the architecture of this receptor family accommodates its remarkable sequence diversity and facilitates the evolution of odour tuning.

Suggested Citation

  • Joel A. Butterwick & Josefina Mármol & Kelly H. Kim & Martha A. Kahlson & Jackson A. Rogow & Thomas Walz & Vanessa Ruta, 2018. "Cryo-EM structure of the insect olfactory receptor Orco," Nature, Nature, vol. 560(7719), pages 447-452, August.
  • Handle: RePEc:nat:nature:v:560:y:2018:i:7719:d:10.1038_s41586-018-0420-8
    DOI: 10.1038/s41586-018-0420-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0420-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0420-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengbo Wang & Shuo Gao & Chenyu Tang & Edoardo Occhipinti & Cong Li & Shurui Wang & Jiaqi Wang & Hubin Zhao & Guohua Hu & Arokia Nathan & Ravinder Dahiya & Luigi Giuseppe Occhipinti, 2024. "Memristor-based adaptive neuromorphic perception in unstructured environments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Jody Pacalon & Guillaume Audic & Justine Magnat & Manon Philip & Jérôme Golebiowski & Christophe J. Moreau & Jérémie Topin, 2023. "Elucidation of the structural basis for ligand binding and translocation in conserved insect odorant receptor co-receptors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:560:y:2018:i:7719:d:10.1038_s41586-018-0420-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.