IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48435-6.html
   My bibliography  Save this article

Overcoming strength-ductility tradeoff with high pressure thermal treatment

Author

Listed:
  • Yao Tang

    (College of Energy Engineering, Zhejiang University
    Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University)

  • Haikuo Wang

    (College of Energy Engineering, Zhejiang University)

  • Xiaoping Ouyang

    (College of Energy Engineering, Zhejiang University
    Xiangtan University)

  • Chao Wang

    (College of Energy Engineering, Zhejiang University)

  • Qishan Huang

    (Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University)

  • Qingkun Zhao

    (Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University)

  • Xiaochun Liu

    (Changsha University of Science and Technology)

  • Qi Zhu

    (College of Engineering, Nanyang Technological University)

  • Zhiqiang Hou

    (College of Energy Engineering, Zhejiang University)

  • Jiakun Wu

    (College of Energy Engineering, Zhejiang University)

  • Zhicai Zhang

    (College of Energy Engineering, Zhejiang University)

  • Hao Li

    (College of Energy Engineering, Zhejiang University)

  • Yikan Yang

    (College of Energy Engineering, Zhejiang University)

  • Wei Yang

    (Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University)

  • Huajian Gao

    (College of Engineering, Nanyang Technological University
    A*STAR
    Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University)

  • Haofei Zhou

    (Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University)

Abstract

Conventional material processing approaches often achieve strengthening of materials at the cost of reduced ductility. Here, we show that high-pressure and high-temperature (HPHT) treatment can help overcome the strength-ductility trade-off in structural materials. We report an initially strong-yet-brittle eutectic high entropy alloy simultaneously doubling its strength to 1150 MPa and its tensile ductility to 36% after the HPHT treatment. Such strength-ductility synergy is attributed to the HPHT-induced formation of a hierarchically patterned microstructure with coherent interfaces, which promotes multiple deformation mechanisms, including dislocations, stacking faults, microbands and deformation twins, at multiple length scales. More importantly, the HPHT-induced microstructure helps relieve stress concentration at the interfaces, thereby arresting interfacial cracking commonly observed in traditional eutectic high entropy alloys. These findings suggest a new direction of research in employing HPHT techniques to help develop next generation structural materials.

Suggested Citation

  • Yao Tang & Haikuo Wang & Xiaoping Ouyang & Chao Wang & Qishan Huang & Qingkun Zhao & Xiaochun Liu & Qi Zhu & Zhiqiang Hou & Jiakun Wu & Zhicai Zhang & Hao Li & Yikan Yang & Wei Yang & Huajian Gao & Ha, 2024. "Overcoming strength-ductility tradeoff with high pressure thermal treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48435-6
    DOI: 10.1038/s41467-024-48435-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48435-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48435-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. Irifune & A. Kurio & S. Sakamoto & T. Inoue & H. Sumiya, 2003. "Correction: Ultrahard polycrystalline diamond from graphite," Nature, Nature, vol. 421(6925), pages 806-806, February.
    2. Tetsuo Irifune & Ayako Kurio & Shizue Sakamoto & Toru Inoue & Hitoshi Sumiya, 2003. "Ultrahard polycrystalline diamond from graphite," Nature, Nature, vol. 421(6923), pages 599-600, February.
    3. Hu Tang & Xiaohong Yuan & Yong Cheng & Hongzhan Fei & Fuyang Liu & Tao Liang & Zhidan Zeng & Takayuki Ishii & Ming-Sheng Wang & Tomoo Katsura & Howard Sheng & Huiyang Gou, 2021. "Synthesis of paracrystalline diamond," Nature, Nature, vol. 599(7886), pages 605-610, November.
    4. Jie Ren & Yin Zhang & Dexin Zhao & Yan Chen & Shuai Guan & Yanfang Liu & Liang Liu & Siyuan Peng & Fanyue Kong & Jonathan D. Poplawsky & Guanhui Gao & Thomas Voisin & Ke An & Y. Morris Wang & Kelvin Y, 2022. "Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing," Nature, Nature, vol. 608(7921), pages 62-68, August.
    5. Qingfeng Wu & Feng He & Junjie Li & Hyoung Seop Kim & Zhijun Wang & Jincheng Wang, 2022. "Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingfeng Liu & Jiantao Wang & Junwei Hu & Peitao Liu & Haiyang Niu & Xuexi Yan & Jiangxu Li & Haile Yan & Bo Yang & Yan Sun & Chunlin Chen & Georg Kresse & Liang Zuo & Xing-Qiu Chen, 2024. "Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Xuesong Yang & Linfeng Lan & Liang Li & Xiaokong Liu & PanĨe Naumov & Hongyu Zhang, 2022. "Remote and precise control over morphology and motion of organic crystals by using magnetic field," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Punit Kumar & Sheng Huang & David H. Cook & Kai Chen & Upadrasta Ramamurty & Xipeng Tan & Robert O. Ritchie, 2024. "A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Yuchen Shang & Mingguang Yao & Zhaodong Liu & Rong Fu & Longbiao Yan & Long Yang & Zhongyin Zhang & Jiajun Dong & Chunguang Zhai & Xuyuan Hou & Liting Fei & GuanJie Zhang & Jianfeng Ji & Jie Zhu & He , 2023. "Enhancement of short/medium-range order and thermal conductivity in ultrahard sp3 amorphous carbon by C70 precursor," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Lile Squires & Ethan Roberts & Amit Bandyopadhyay, 2023. "Radial bimetallic structures via wire arc directed energy deposition-based additive manufacturing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Chengyi Yu & Kun Lin & Qinghua Zhang & Huihui Zhu & Ke An & Yan Chen & Dunji Yu & Tianyi Li & Xiaoqian Fu & Qian Yu & Li You & Xiaojun Kuang & Yili Cao & Qiang Li & Jinxia Deng & Xianran Xing, 2024. "An isotropic zero thermal expansion alloy with super-high toughness," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Wuyang Ren & Wenhua Xue & Shuping Guo & Ran He & Liangzi Deng & Shaowei Song & Andrei Sotnikov & Kornelius Nielsch & Jeroen Brink & Guanhui Gao & Shuo Chen & Yimo Han & Jiang Wu & Ching-Wu Chu & Zhimi, 2023. "Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Jianan Yin & Yang Yan & Mulin Miao & Jiayin Tang & Jiali Jiang & Hui Liu & Yuhan Chen & Yinxian Chen & Fucong Lyu & Zhengyi Mao & Yunhu He & Lei Wan & Binbin Zhou & Jian Lu, 2024. "Diamond with Sp2-Sp3 composite phase for thermometry at Millikelvin temperatures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Xingjia He & Yu Zhang & Xinlei Gu & Jiangwei Wang & Jinlei Qi & Jun Hao & Longpeng Wang & Hao Huang & Mao Wen & Kan Zhang & Weitao Zheng, 2023. "Pt-induced atomic-level tailoring towards paracrystalline high-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Lei Zhang & Hanwen Liu & Bo Song & Jialun Gu & Lanxi Li & Wenhui Shi & Gan Li & Shiyu Zhong & Hui Liu & Xiaobo Wang & Junxiang Fan & Zhi Zhang & Pengfei Wang & Yonggang Yao & Yusheng Shi & Jian Lu, 2024. "Wood-inspired metamaterial catalyst for robust and high-throughput water purification," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Tielong Han & Chao Hou & Zhi Zhao & Zengbao Jiao & Yurong Li & Shuang Jiang & Hao Lu & Haibin Wang & Xuemei Liu & Zuoren Nie & Xiaoyan Song, 2024. "Simultaneous enhancement of strength and conductivity via self-assembled lamellar architecture," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. A. Plotkowski & K. Saleeby & C. M. Fancher & J. Haley & G. Madireddy & K. An & R. Kannan & T. Feldhausen & Y. Lee & D. Yu & C. Leach & J. Vaughan & S. S. Babu, 2023. "Operando neutron diffraction reveals mechanisms for controlled strain evolution in 3D printing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48435-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.