IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v421y2003i6925d10.1038_421806b.html
   My bibliography  Save this article

Correction: Ultrahard polycrystalline diamond from graphite

Author

Listed:
  • T. Irifune
  • A. Kurio
  • S. Sakamoto
  • T. Inoue
  • H. Sumiya

Abstract

Nature 421, 599–600, 2002 In the legend to Fig. 1a of this communication, the diameter of the transparent polycrystalline diamond shown is 1 mm, and not 0.1 mm as published; the scale divisions represent 0.1 mm. Also, the first full paragraph in the second column on page 600 should read: “Recent chemical-vapour deposition techniques provided pure polycrystalline diamonds, but these diamonds are not sintered and have poor intergrain adhesion.

Suggested Citation

  • T. Irifune & A. Kurio & S. Sakamoto & T. Inoue & H. Sumiya, 2003. "Correction: Ultrahard polycrystalline diamond from graphite," Nature, Nature, vol. 421(6925), pages 806-806, February.
  • Handle: RePEc:nat:nature:v:421:y:2003:i:6925:d:10.1038_421806b
    DOI: 10.1038/421806b
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/421806b
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/421806b?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Tang & Haikuo Wang & Xiaoping Ouyang & Chao Wang & Qishan Huang & Qingkun Zhao & Xiaochun Liu & Qi Zhu & Zhiqiang Hou & Jiakun Wu & Zhicai Zhang & Hao Li & Yikan Yang & Wei Yang & Huajian Gao & Ha, 2024. "Overcoming strength-ductility tradeoff with high pressure thermal treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Mingfeng Liu & Jiantao Wang & Junwei Hu & Peitao Liu & Haiyang Niu & Xuexi Yan & Jiangxu Li & Haile Yan & Bo Yang & Yan Sun & Chunlin Chen & Georg Kresse & Liang Zuo & Xing-Qiu Chen, 2024. "Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Xuesong Yang & Linfeng Lan & Liang Li & Xiaokong Liu & Panče Naumov & Hongyu Zhang, 2022. "Remote and precise control over morphology and motion of organic crystals by using magnetic field," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:421:y:2003:i:6925:d:10.1038_421806b. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.