IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48137-z.html
   My bibliography  Save this article

Diamond with Sp2-Sp3 composite phase for thermometry at Millikelvin temperatures

Author

Listed:
  • Jianan Yin

    (CityU-Shenzhen Futian Research Institute
    City University of Hong Kong
    City University of Hong Kong)

  • Yang Yan

    (CityU-Shenzhen Futian Research Institute
    City University of Hong Kong
    City University of Hong Kong)

  • Mulin Miao

    (City University of Hong Kong
    City University of Hong Kong)

  • Jiayin Tang

    (City University of Hong Kong)

  • Jiali Jiang

    (City University of Hong Kong
    City University of Hong Kong)

  • Hui Liu

    (CityU-Shenzhen Futian Research Institute
    City University of Hong Kong
    City University of Hong Kong)

  • Yuhan Chen

    (City University of Hong Kong
    City University of Hong Kong)

  • Yinxian Chen

    (City University of Hong Kong
    City University of Hong Kong)

  • Fucong Lyu

    (CityU-Shenzhen Futian Research Institute
    City University of Hong Kong
    City University of Hong Kong)

  • Zhengyi Mao

    (CityU-Shenzhen Futian Research Institute
    City University of Hong Kong
    City University of Hong Kong)

  • Yunhu He

    (CityU-Shenzhen Futian Research Institute
    City University of Hong Kong
    City University of Hong Kong)

  • Lei Wan

    (CityU-Shenzhen Futian Research Institute
    City University of Hong Kong
    City University of Hong Kong
    Limited)

  • Binbin Zhou

    (Chinese Academy of Sciences)

  • Jian Lu

    (CityU-Shenzhen Futian Research Institute
    City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong)

Abstract

Temperature is one of the seven fundamental physical quantities. The ability to measure temperatures approaching absolute zero has driven numerous advances in low-temperature physics and quantum physics. Currently, millikelvin temperatures and below are measured through the characterization of a certain thermal state of the system as there is no traditional thermometer capable of measuring temperatures at such low levels. In this study, we develop a kind of diamond with sp2-sp3 composite phase to tackle this problem. The synthesized composite phase diamond (CPD) exhibits a negative temperature coefficient, providing an excellent fit across a broad temperature range, and reaching a temperature measurement limit of 1 mK. Additionally, the CPD demonstrates low magnetic field sensitivity and excellent thermal stability, and can be fabricated into probes down to 1 micron in diameter, making it a promising candidate for the manufacture of next-generation cryogenic temperature sensors. This development is significant for the low-temperature physics researches, and can help facilitate the transition of quantum computing, quantum simulation, and other related technologies from research to practical applications.

Suggested Citation

  • Jianan Yin & Yang Yan & Mulin Miao & Jiayin Tang & Jiali Jiang & Hui Liu & Yuhan Chen & Yinxian Chen & Fucong Lyu & Zhengyi Mao & Yunhu He & Lei Wan & Binbin Zhou & Jian Lu, 2024. "Diamond with Sp2-Sp3 composite phase for thermometry at Millikelvin temperatures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48137-z
    DOI: 10.1038/s41467-024-48137-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48137-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48137-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ge Wu & Ka-Cheung Chan & Linli Zhu & Ligang Sun & Jian Lu, 2017. "Dual-phase nanostructuring as a route to high-strength magnesium alloys," Nature, Nature, vol. 545(7652), pages 80-83, May.
    2. Quan Huang & Dongli Yu & Bo Xu & Wentao Hu & Yanming Ma & Yanbin Wang & Zhisheng Zhao & Bin Wen & Julong He & Zhongyuan Liu & Yongjun Tian, 2014. "Nanotwinned diamond with unprecedented hardness and stability," Nature, Nature, vol. 510(7504), pages 250-253, June.
    3. Hu Tang & Xiaohong Yuan & Yong Cheng & Hongzhan Fei & Fuyang Liu & Tao Liang & Zhidan Zeng & Takayuki Ishii & Ming-Sheng Wang & Tomoo Katsura & Howard Sheng & Huiyang Gou, 2021. "Synthesis of paracrystalline diamond," Nature, Nature, vol. 599(7886), pages 605-610, November.
    4. Varun Narasimhachar & Gilad Gour, 2015. "Low-temperature thermodynamics with quantum coherence," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    5. Felix Tebbenjohanns & M. Luisa Mattana & Massimiliano Rossi & Martin Frimmer & Lukas Novotny, 2021. "Quantum control of a nanoparticle optically levitated in cryogenic free space," Nature, Nature, vol. 595(7867), pages 378-382, July.
    6. Kun Luo & Bing Liu & Wentao Hu & Xiao Dong & Yanbin Wang & Quan Huang & Yufei Gao & Lei Sun & Zhisheng Zhao & Yingju Wu & Yang Zhang & Mengdong Ma & Xiang-Feng Zhou & Julong He & Dongli Yu & Zhongyuan, 2022. "Coherent interfaces govern direct transformation from graphite to diamond," Nature, Nature, vol. 607(7919), pages 486-491, July.
    7. Zhiming Li & Konda Gokuldoss Pradeep & Yun Deng & Dierk Raabe & Cemal Cem Tasan, 2016. "Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off," Nature, Nature, vol. 534(7606), pages 227-230, June.
    8. A. P. Drozdov & P. P. Kong & V. S. Minkov & S. P. Besedin & M. A. Kuzovnikov & S. Mozaffari & L. Balicas & F. F. Balakirev & D. E. Graf & V. B. Prakapenka & E. Greenberg & D. A. Knyazev & M. Tkacz & M, 2019. "Superconductivity at 250 K in lanthanum hydride under high pressures," Nature, Nature, vol. 569(7757), pages 528-531, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingjia He & Yu Zhang & Xinlei Gu & Jiangwei Wang & Jinlei Qi & Jun Hao & Longpeng Wang & Hao Huang & Mao Wen & Kan Zhang & Weitao Zheng, 2023. "Pt-induced atomic-level tailoring towards paracrystalline high-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Yuchen Shang & Mingguang Yao & Zhaodong Liu & Rong Fu & Longbiao Yan & Long Yang & Zhongyin Zhang & Jiajun Dong & Chunguang Zhai & Xuyuan Hou & Liting Fei & GuanJie Zhang & Jianfeng Ji & Jie Zhu & He , 2023. "Enhancement of short/medium-range order and thermal conductivity in ultrahard sp3 amorphous carbon by C70 precursor," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Xizheng Wang & Yunhao Zhao & Gang Chen & Xinpeng Zhao & Chuan Liu & Soumya Sridar & Luis Fernando Ladinos Pizano & Shuke Li & Alexandra H. Brozena & Miao Guo & Hanlei Zhang & Yuankang Wang & Wei Xiong, 2022. "Ultrahigh-temperature melt printing of multi-principal element alloys," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Jingkun Guo & Jin Chang & Xiong Yao & Simon Gröblacher, 2023. "Active-feedback quantum control of an integrated low-frequency mechanical resonator," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Hui Wang & Pascal T. Salzbrenner & Ion Errea & Feng Peng & Ziheng Lu & Hanyu Liu & Li Zhu & Chris J. Pickard & Yansun Yao, 2023. "Quantum structural fluxion in superconducting lanthanum polyhydride," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Xuesong Yang & Linfeng Lan & Liang Li & Xiaokong Liu & Panče Naumov & Hongyu Zhang, 2022. "Remote and precise control over morphology and motion of organic crystals by using magnetic field," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Liu-Cheng Chen & Tao Luo & Zi-Yu Cao & Philip Dalladay-Simpson & Ge Huang & Di Peng & Li-Li Zhang & Federico Aiace Gorelli & Guo-Hua Zhong & Hai-Qing Lin & Xiao-Jia Chen, 2024. "Synthesis and superconductivity in yttrium-cerium hydrides at high pressures," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Yaxin Jiang & Hao Xiong & Tianping Ying & Guo Tian & Xiao Chen & Fei Wei, 2024. "Ultrasmall single-layered NbSe2 nanotubes flattened within a chemical-driven self-pressurized carbon nanotube," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Mengqi Wang & Yu Wang & Zhixian Liu & Ganyu Xu & Bo Yang & Pei Yu & Haoyu Sun & Xiangyu Ye & Jingwei Zhou & Alexander F. Goncharov & Ya Wang & Jiangfeng Du, 2024. "Imaging magnetic transition of magnetite to megabar pressures using quantum sensors in diamond anvil cell," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Cheng Hu & Jiajun Chen & Xianliang Zhou & Yufeng Xie & Xinyue Huang & Zhenghan Wu & Saiqun Ma & Zhichun Zhang & Kunqi Xu & Neng Wan & Yueheng Zhang & Qi Liang & Zhiwen Shi, 2024. "Collapse of carbon nanotubes due to local high-pressure from van der Waals encapsulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Mingliang Han & Yuan Wu & Xiaobin Zong & Yaozu Shen & Fei Zhang & Hongbo Lou & Xiao Dong & Zhidan Zeng & Xiangyang Peng & Shuo Hou & Guangyao Lu & Lianghua Xiong & Bingmin Yan & Huiyang Gou & Yanping , 2024. "Lightweight single-phase Al-based complex concentrated alloy with high specific strength," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Zongrui Pei & Shiteng Zhao & Martin Detrois & Paul D. Jablonski & Jeffrey A. Hawk & David E. Alman & Mark Asta & Andrew M. Minor & Michael C. Gao, 2023. "Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Yannick Naunheim & Christopher A. Schuh, 2024. "Multicomponent alloys designed to sinter," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Wenqing Zhu & Zhi Li & Hua Shu & Huajian Gao & Xiaoding Wei, 2024. "Amorphous alloys surpass E/10 strength limit at extreme strain rates," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Bo Xiao & Junhua Luan & Shijun Zhao & Lijun Zhang & Shiyao Chen & Yilu Zhao & Lianyong Xu & C. T. Liu & Ji-Jung Kai & Tao Yang, 2022. "Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Sheng Xu & Takumi Odaira & Shunsuke Sato & Xiao Xu & Toshihiro Omori & Stefanus Harjo & Takuro Kawasaki & Hanuš Seiner & Kristýna Zoubková & Yasukazu Murakami & Ryosuke Kainuma, 2022. "Non-Hookean large elastic deformation in bulk crystalline metals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Wuhao Chen & Xiaoli Huang & Dmitrii V. Semenok & Su Chen & Di Zhou & Kexin Zhang & Artem R. Oganov & Tian Cui, 2023. "Enhancement of superconducting properties in the La–Ce–H system at moderate pressures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48137-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.