IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v608y2022i7921d10.1038_s41586-022-04914-8.html
   My bibliography  Save this article

Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing

Author

Listed:
  • Jie Ren

    (University of Massachusetts)

  • Yin Zhang

    (Georgia Institute of Technology)

  • Dexin Zhao

    (Texas A&M University)

  • Yan Chen

    (Oak Ridge National Laboratory)

  • Shuai Guan

    (University of Massachusetts)

  • Yanfang Liu

    (University of Massachusetts)

  • Liang Liu

    (University of Massachusetts)

  • Siyuan Peng

    (University of Massachusetts)

  • Fanyue Kong

    (University of Massachusetts)

  • Jonathan D. Poplawsky

    (Oak Ridge National Laboratory)

  • Guanhui Gao

    (Rice University)

  • Thomas Voisin

    (Lawrence Livermore National Laboratory)

  • Ke An

    (Oak Ridge National Laboratory)

  • Y. Morris Wang

    (University of California)

  • Kelvin Y. Xie

    (Texas A&M University)

  • Ting Zhu

    (Georgia Institute of Technology)

  • Wen Chen

    (University of Massachusetts)

Abstract

Additive manufacturing produces net-shaped components layer by layer for engineering applications1–7. The additive manufacture of metal alloys by laser powder bed fusion (L-PBF) involves large temperature gradients and rapid cooling2,6, which enables microstructural refinement at the nanoscale to achieve high strength. However, high-strength nanostructured alloys produced by laser additive manufacturing often have limited ductility3. Here we use L-PBF to print dual-phase nanolamellar high-entropy alloys (HEAs) of AlCoCrFeNi2.1 that exhibit a combination of a high yield strength of about 1.3 gigapascals and a large uniform elongation of about 14 per cent, which surpasses those of other state-of-the-art additively manufactured metal alloys. The high yield strength stems from the strong strengthening effects of the dual-phase structures that consist of alternating face-centred cubic and body-centred cubic nanolamellae; the body-centred cubic nanolamellae exhibit higher strengths and higher hardening rates than the face-centred cubic nanolamellae. The large tensile ductility arises owing to the high work-hardening capability of the as-printed hierarchical microstructures in the form of dual-phase nanolamellae embedded in microscale eutectic colonies, which have nearly random orientations to promote isotropic mechanical properties. The mechanistic insights into the deformation behaviour of additively manufactured HEAs have broad implications for the development of hierarchical, dual- and multi-phase, nanostructured alloys with exceptional mechanical properties.

Suggested Citation

  • Jie Ren & Yin Zhang & Dexin Zhao & Yan Chen & Shuai Guan & Yanfang Liu & Liang Liu & Siyuan Peng & Fanyue Kong & Jonathan D. Poplawsky & Guanhui Gao & Thomas Voisin & Ke An & Y. Morris Wang & Kelvin Y, 2022. "Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing," Nature, Nature, vol. 608(7921), pages 62-68, August.
  • Handle: RePEc:nat:nature:v:608:y:2022:i:7921:d:10.1038_s41586-022-04914-8
    DOI: 10.1038/s41586-022-04914-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-04914-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-04914-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zhang & Hanwen Liu & Bo Song & Jialun Gu & Lanxi Li & Wenhui Shi & Gan Li & Shiyu Zhong & Hui Liu & Xiaobo Wang & Junxiang Fan & Zhi Zhang & Pengfei Wang & Yonggang Yao & Yusheng Shi & Jian Lu, 2024. "Wood-inspired metamaterial catalyst for robust and high-throughput water purification," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Chengyi Yu & Kun Lin & Qinghua Zhang & Huihui Zhu & Ke An & Yan Chen & Dunji Yu & Tianyi Li & Xiaoqian Fu & Qian Yu & Li You & Xiaojun Kuang & Yili Cao & Qiang Li & Jinxia Deng & Xianran Xing, 2024. "An isotropic zero thermal expansion alloy with super-high toughness," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Fenghui Duan & Qian Li & Zhihao Jiang & Lin Zhou & Junhua Luan & Zheling Shen & Weihua Zhou & Shiyuan Zhang & Jie Pan & Xin Zhou & Tao Yang & Jian Lu, 2024. "An order-disorder core-shell strategy for enhanced work-hardening capability and ductility in nanostructured alloys," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Lile Squires & Ethan Roberts & Amit Bandyopadhyay, 2023. "Radial bimetallic structures via wire arc directed energy deposition-based additive manufacturing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. A. Plotkowski & K. Saleeby & C. M. Fancher & J. Haley & G. Madireddy & K. An & R. Kannan & T. Feldhausen & Y. Lee & D. Yu & C. Leach & J. Vaughan & S. S. Babu, 2023. "Operando neutron diffraction reveals mechanisms for controlled strain evolution in 3D printing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yao Tang & Haikuo Wang & Xiaoping Ouyang & Chao Wang & Qishan Huang & Qingkun Zhao & Xiaochun Liu & Qi Zhu & Zhiqiang Hou & Jiakun Wu & Zhicai Zhang & Hao Li & Yikan Yang & Wei Yang & Huajian Gao & Ha, 2024. "Overcoming strength-ductility tradeoff with high pressure thermal treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Tielong Han & Chao Hou & Zhi Zhao & Zengbao Jiao & Yurong Li & Shuang Jiang & Hao Lu & Haibin Wang & Xuemei Liu & Zuoren Nie & Xiaoyan Song, 2024. "Simultaneous enhancement of strength and conductivity via self-assembled lamellar architecture," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Punit Kumar & Sheng Huang & David H. Cook & Kai Chen & Upadrasta Ramamurty & Xipeng Tan & Robert O. Ritchie, 2024. "A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:608:y:2022:i:7921:d:10.1038_s41586-022-04914-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.