IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56355-2.html
   My bibliography  Save this article

Highly printable, strong, and ductile ordered intermetallic alloy

Author

Listed:
  • Yinghao Zhou

    (City University of Hong Kong
    City University of Hong Kong)

  • Weicheng Xiao

    (City University of Hong Kong)

  • Dawei Wang

    (Southern University of Science and Technology)

  • Xu Tang

    (Harbin Institute of Technology (Shenzhen))

  • Zheling Shen

    (Chinese Academy of Sciences)

  • Weipeng Li

    (Southern University of Science and Technology)

  • Jun Zhang

    (City University of Hong Kong)

  • Shijun Zhao

    (City University of Hong Kong)

  • Junhua Luan

    (City University of Hong Kong)

  • Zibing An

    (Southern University of Science and Technology)

  • Rongpei Shi

    (Harbin Institute of Technology (Shenzhen))

  • Ming Yan

    (Southern University of Science and Technology)

  • Xiaodong. Han

    (Southern University of Science and Technology)

  • C. T. Liu

    (City University of Hong Kong
    City University of Hong Kong)

  • Yilu Zhao

    (Harbin Institute of Technology (Shenzhen))

  • Tao Yang

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong)

Abstract

Ordered intermetallic alloys are renowned for their impressive mechanical, chemical, and physical properties, making them appealing for various fields. However, practical applications of them have long been severely hindered due to their severe brittleness and poor fabricability. It is difficult to fabricate such materials into components with complex geometries through traditional subtractive manufacturing methods. Here, we proposed a strategy to solve these long-standing issues through the additive manufacturing of chemically complex intermetallic alloy (CCIMA) based on laser powder bed fusion (LPBF). The developed CCIMA exhibits good printability, enabling a crack-free microstructure with a low porosity of 0.005%. More importantly, a good combination of high tensile strength (~1.6 GPa) and large uniform elongation (~35%) can be achieved, which has not been reported in the existing additive-manufactured alloys. Such properties are attributed to the structural and chemical features of highly ordered superlattice grain decorated with disordered interfacial nanolayer, as well as dynamic evolutions and interactions of multiple dislocation substructures. These findings could provide references for developing high-performance intermetallic alloys and accelerating their practical applications.

Suggested Citation

  • Yinghao Zhou & Weicheng Xiao & Dawei Wang & Xu Tang & Zheling Shen & Weipeng Li & Jun Zhang & Shijun Zhao & Junhua Luan & Zibing An & Rongpei Shi & Ming Yan & Xiaodong. Han & C. T. Liu & Yilu Zhao & T, 2025. "Highly printable, strong, and ductile ordered intermetallic alloy," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56355-2
    DOI: 10.1038/s41467-025-56355-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56355-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56355-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy M. Smith & Christopher A. Kantzos & Nikolai A. Zarkevich & Bryan J. Harder & Milan Heczko & Paul R. Gradl & Aaron C. Thompson & Michael J. Mills & Timothy P. Gabb & John W. Lawson, 2023. "A 3D printable alloy designed for extreme environments," Nature, Nature, vol. 617(7961), pages 513-518, May.
    2. Jie Ren & Yin Zhang & Dexin Zhao & Yan Chen & Shuai Guan & Yanfang Liu & Liang Liu & Siyuan Peng & Fanyue Kong & Jonathan D. Poplawsky & Guanhui Gao & Thomas Voisin & Ke An & Y. Morris Wang & Kelvin Y, 2022. "Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing," Nature, Nature, vol. 608(7921), pages 62-68, August.
    3. Tingting Song & Zibin Chen & Xiangyuan Cui & Shenglu Lu & Hansheng Chen & Hao Wang & Tony Dong & Bailiang Qin & Kang Cheung Chan & Milan Brandt & Xiaozhou Liao & Simon P. Ringer & Ma Qian, 2023. "Strong and ductile titanium–oxygen–iron alloys by additive manufacturing," Nature, Nature, vol. 618(7963), pages 63-68, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Punit Kumar & Sheng Huang & David H. Cook & Kai Chen & Upadrasta Ramamurty & Xipeng Tan & Robert O. Ritchie, 2024. "A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Akane Wakai & Jenniffer Bustillos & Noah Sargent & Jamesa L. Stokes & Wei Xiong & Timothy M. Smith & Atieh Moridi, 2025. "Harnessing metastability for grain size control in multiprincipal element alloys during additive manufacturing," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Lile Squires & Ethan Roberts & Amit Bandyopadhyay, 2023. "Radial bimetallic structures via wire arc directed energy deposition-based additive manufacturing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yao Tang & Haikuo Wang & Xiaoping Ouyang & Chao Wang & Qishan Huang & Qingkun Zhao & Xiaochun Liu & Qi Zhu & Zhiqiang Hou & Jiakun Wu & Zhicai Zhang & Hao Li & Yikan Yang & Wei Yang & Huajian Gao & Ha, 2024. "Overcoming strength-ductility tradeoff with high pressure thermal treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Chengyi Yu & Kun Lin & Qinghua Zhang & Huihui Zhu & Ke An & Yan Chen & Dunji Yu & Tianyi Li & Xiaoqian Fu & Qian Yu & Li You & Xiaojun Kuang & Yili Cao & Qiang Li & Jinxia Deng & Xianran Xing, 2024. "An isotropic zero thermal expansion alloy with super-high toughness," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Lei Zhang & Hanwen Liu & Bo Song & Jialun Gu & Lanxi Li & Wenhui Shi & Gan Li & Shiyu Zhong & Hui Liu & Xiaobo Wang & Junxiang Fan & Zhi Zhang & Pengfei Wang & Yonggang Yao & Yusheng Shi & Jian Lu, 2024. "Wood-inspired metamaterial catalyst for robust and high-throughput water purification," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Tielong Han & Chao Hou & Zhi Zhao & Zengbao Jiao & Yurong Li & Shuang Jiang & Hao Lu & Haibin Wang & Xuemei Liu & Zuoren Nie & Xiaoyan Song, 2024. "Simultaneous enhancement of strength and conductivity via self-assembled lamellar architecture," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. A. Plotkowski & K. Saleeby & C. M. Fancher & J. Haley & G. Madireddy & K. An & R. Kannan & T. Feldhausen & Y. Lee & D. Yu & C. Leach & J. Vaughan & S. S. Babu, 2023. "Operando neutron diffraction reveals mechanisms for controlled strain evolution in 3D printing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Fenghui Duan & Qian Li & Zhihao Jiang & Lin Zhou & Junhua Luan & Zheling Shen & Weihua Zhou & Shiyuan Zhang & Jie Pan & Xin Zhou & Tao Yang & Jian Lu, 2024. "An order-disorder core-shell strategy for enhanced work-hardening capability and ductility in nanostructured alloys," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56355-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.