IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40492-7.html
   My bibliography  Save this article

Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi

Author

Listed:
  • Wuyang Ren

    (University of Electronic Science and Technology of China
    Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH))

  • Wenhua Xue

    (Chinese Academy of Science)

  • Shuping Guo

    (Leibniz Institute for Solid State and Materials Research)

  • Ran He

    (Leibniz Institute for Solid State and Materials Research)

  • Liangzi Deng

    (Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH))

  • Shaowei Song

    (Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH))

  • Andrei Sotnikov

    (Leibniz Institute for Solid State and Materials Research)

  • Kornelius Nielsch

    (Leibniz Institute for Solid State and Materials Research)

  • Jeroen Brink

    (Leibniz Institute for Solid State and Materials Research)

  • Guanhui Gao

    (Rice University)

  • Shuo Chen

    (Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH))

  • Yimo Han

    (Rice University)

  • Jiang Wu

    (University of Electronic Science and Technology of China)

  • Ching-Wu Chu

    (Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH))

  • Zhiming Wang

    (University of Electronic Science and Technology of China)

  • Yumei Wang

    (Chinese Academy of Science)

  • Zhifeng Ren

    (Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH))

Abstract

Studies of vacancy-mediated anomalous transport properties have flourished in diverse fields since these properties endow solid materials with fascinating photoelectric, ferroelectric, and spin-electric behaviors. Although phononic and electronic transport underpin the physical origin of thermoelectrics, vacancy has only played a stereotyped role as a scattering center. Here we reveal the multifunctionality of vacancy in tailoring the transport properties of an emerging thermoelectric material, defective n-type ZrNiBi. The phonon kinetic process is mediated in both propagating velocity and relaxation time: vacancy-induced local soft bonds lower the phonon velocity while acoustic-optical phonon coupling, anisotropic vibrations, and point-defect scattering induced by vacancy shorten the relaxation time. Consequently, defective ZrNiBi exhibits the lowest lattice thermal conductivity among the half-Heusler family. In addition, a vacancy-induced flat band features prominently in its electronic band structure, which is not only desirable for electron-sufficient thermoelectric materials but also interesting for driving other novel physical phenomena. Finally, better thermoelectric performance is established in a ZrNiBi-based compound. Our findings not only demonstrate a promising thermoelectric material but also promote the fascinating vacancy-mediated anomalous transport properties for multidisciplinary explorations.

Suggested Citation

  • Wuyang Ren & Wenhua Xue & Shuping Guo & Ran He & Liangzi Deng & Shaowei Song & Andrei Sotnikov & Kornelius Nielsch & Jeroen Brink & Guanhui Gao & Shuo Chen & Yimo Han & Jiang Wu & Ching-Wu Chu & Zhimi, 2023. "Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40492-7
    DOI: 10.1038/s41467-023-40492-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40492-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40492-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hangtian Zhu & Jun Mao & Yuwei Li & Jifeng Sun & Yumei Wang & Qing Zhu & Guannan Li & Qichen Song & Jiawei Zhou & Yuhao Fu & Ran He & Tian Tong & Zihang Liu & Wuyang Ren & Li You & Zhiming Wang & Jun , 2019. "Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. T. M. Smith & B. D. Esser & N. Antolin & A. Carlsson & R. E. A. Williams & A. Wessman & T. Hanlon & H. L. Fraser & W. Windl & D. W. McComb & M. J. Mills, 2016. "Phase transformation strengthening of high-temperature superalloys," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    3. M. Venkatesan & C. B. Fitzgerald & J. M. D. Coey, 2004. "Unexpected magnetism in a dielectric oxide," Nature, Nature, vol. 430(7000), pages 630-630, August.
    4. Barry Bradlyn & L. Elcoro & Jennifer Cano & M. G. Vergniory & Zhijun Wang & C. Felser & M. I. Aroyo & B. Andrei Bernevig, 2017. "Topological quantum chemistry," Nature, Nature, vol. 547(7663), pages 298-305, July.
    5. Hangtian Zhu & Ran He & Jun Mao & Qing Zhu & Chunhua Li & Jifeng Sun & Wuyang Ren & Yumei Wang & Zihang Liu & Zhongjia Tang & Andrei Sotnikov & Zhiming Wang & David Broido & David J. Singh & Gang Chen, 2018. "Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    6. Junhyeon Jo & Jung Hwa Kim & Choong H. Kim & Jaebyeong Lee & Daeseong Choe & Inseon Oh & Seunghyun Lee & Zonghoon Lee & Hosub Jin & Jung-Woo Yoo, 2022. "Defect-gradient-induced Rashba effect in van der Waals PtSe2 layers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Ruopeng Zhang & Shiteng Zhao & Jun Ding & Yan Chong & Tao Jia & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2020. "Short-range order and its impact on the CrCoNi medium-entropy alloy," Nature, Nature, vol. 581(7808), pages 283-287, May.
    8. Suixuan Li & Zihao Qin & Huan Wu & Man Li & Martin Kunz & Ahmet Alatas & Abby Kavner & Yongjie Hu, 2022. "Anomalous thermal transport under high pressure in boron arsenide," Nature, Nature, vol. 612(7940), pages 459-464, December.
    9. Qingfeng Wu & Feng He & Junjie Li & Hyoung Seop Kim & Zhijun Wang & Jincheng Wang, 2022. "Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinfeng Zhu & Qingyong Ren & Chen Chen & Chen Wang & Mingfang Shu & Miao He & Cuiping Zhang & Manh Duc Le & Shuki Torri & Chin-Wei Wang & Jianli Wang & Zhenxiang Cheng & Lisi Li & Guohua Wang & Yuxuan, 2024. "Vacancies tailoring lattice anharmonicity of Zintl-type thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hangtian Zhu & Wenjie Li & Amin Nozariasbmarz & Na Liu & Yu Zhang & Shashank Priya & Bed Poudel, 2023. "Half-Heusler alloys as emerging high power density thermoelectric cooling materials," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Jinyu Liu & Yinong Zhou & Sebastian Yepez Rodriguez & Matthew A. Delmont & Robert A. Welser & Triet Ho & Nicholas Sirica & Kaleb McClure & Paolo Vilmercati & Joseph W. Ziller & Norman Mannella & Javie, 2024. "Controllable strain-driven topological phase transition and dominant surface-state transport in HfTe5," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Jonah Herzog-Arbeitman & B. Andrei Bernevig & Zhi-Da Song, 2024. "Interacting topological quantum chemistry in 2D with many-body real space invariants," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Chunyu Guo & A. Alexandradinata & Carsten Putzke & Amelia Estry & Teng Tu & Nitesh Kumar & Feng-Ren Fan & Shengnan Zhang & Quansheng Wu & Oleg V. Yazyev & Kent R. Shirer & Maja D. Bachmann & Hailin Pe, 2021. "Temperature dependence of quantum oscillations from non-parabolic dispersions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    7. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Zongrui Pei & Shiteng Zhao & Martin Detrois & Paul D. Jablonski & Jeffrey A. Hawk & David E. Alman & Mark Asta & Andrew M. Minor & Michael C. Gao, 2023. "Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
    11. Fa-Jie Wang & Zhen-Yu Xiao & Raquel Queiroz & B. Andrei Bernevig & Ady Stern & Zhi-Da Song, 2024. "Anderson critical metal phase in trivial states protected by average magnetic crystalline symmetry," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Robert-Jan Slager & Adrien Bouhon & F. Nur Ünal, 2024. "Non-Abelian Floquet braiding and anomalous Dirac string phase in periodically driven systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. M. dos Santos Dias & N. Biniskos & F. J. dos Santos & K. Schmalzl & J. Persson & F. Bourdarot & N. Marzari & S. Blügel & T. Brückel & S. Lounis, 2023. "Topological magnons driven by the Dzyaloshinskii-Moriya interaction in the centrosymmetric ferromagnet Mn5Ge3," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Qian Zhang & Ranming Niu & Ying Liu & Jiaxi Jiang & Fan Xu & Xuan Zhang & Julie M. Cairney & Xianghai An & Xiaozhou Liao & Huajian Gao & Xiaoyan Li, 2023. "Room-temperature super-elongation in high-entropy alloy nanopillars," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Kuan-Sen Lin & Giandomenico Palumbo & Zhaopeng Guo & Yoonseok Hwang & Jeremy Blackburn & Daniel P. Shoemaker & Fahad Mahmood & Zhijun Wang & Gregory A. Fiete & Benjamin J. Wieder & Barry Bradlyn, 2024. "Spin-resolved topology and partial axion angles in three-dimensional insulators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Jingyuan Yan & Sheng Yin & Mark Asta & Robert O. Ritchie & Jun Ding & Qian Yu, 2022. "Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. N. Wagner & L. Crippa & A. Amaricci & P. Hansmann & M. Klett & E. J. König & T. Schäfer & D. Di Sante & J. Cano & A. J. Millis & A. Georges & G. Sangiovanni, 2023. "Mott insulators with boundary zeros," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Jing Wang & Ping Jiang & Fuping Yuan & Xiaolei Wu, 2022. "Chemical medium-range order in a medium-entropy alloy," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    19. Weixuan Zhang & Fengxiao Di & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2023. "Hyperbolic band topology with non-trivial second Chern numbers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Yao Tang & Haikuo Wang & Xiaoping Ouyang & Chao Wang & Qishan Huang & Qingkun Zhao & Xiaochun Liu & Qi Zhu & Zhiqiang Hou & Jiakun Wu & Zhicai Zhang & Hao Li & Yikan Yang & Wei Yang & Huajian Gao & Ha, 2024. "Overcoming strength-ductility tradeoff with high pressure thermal treatment," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40492-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.