IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48222-3.html
   My bibliography  Save this article

Frequency comb generation via synchronous pumped χ(3) resonator on thin-film lithium niobate

Author

Listed:
  • Rebecca Cheng

    (Harvard University)

  • Mengjie Yu

    (Harvard University
    University of Southern California)

  • Amirhassan Shams-Ansari

    (Harvard University)

  • Yaowen Hu

    (Harvard University
    Harvard University)

  • Christian Reimer

    (HyperLight)

  • Mian Zhang

    (HyperLight)

  • Marko Lončar

    (Harvard University)

Abstract

Resonator-based optical frequency comb generation is an enabling technology for a myriad of applications ranging from communications to precision spectroscopy. These frequency combs can be generated in nonlinear resonators driven using either continuous-wave (CW) light, which requires alignment of the pump frequency with the cavity resonance, or pulsed light, which also mandates that the pulse repetition rate and cavity free spectral range (FSR) are carefully matched. Advancements in nanophotonics have ignited interest in chip-scale optical frequency combs. However, realizing pulse-driven on-chip Kerr combs remains challenging, as microresonator cavities have limited tuning range in their FSR and resonance frequency. Here, we take steps to overcome this limitation and demonstrate broadband frequency comb generation using a χ(3) resonator synchronously pumped by a tunable femtosecond pulse generator with on-chip amplitude and phase modulators. Notably, employing pulsed pumping overcomes limitations in Kerr comb generation typically seen in crystalline resonators from stimulated Raman scattering.

Suggested Citation

  • Rebecca Cheng & Mengjie Yu & Amirhassan Shams-Ansari & Yaowen Hu & Christian Reimer & Mian Zhang & Marko Lončar, 2024. "Frequency comb generation via synchronous pumped χ(3) resonator on thin-film lithium niobate," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48222-3
    DOI: 10.1038/s41467-024-48222-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48222-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48222-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mengjie Yu & Yoshitomo Okawachi & Austin G. Griffith & Nathalie Picqué & Michal Lipson & Alexander L. Gaeta, 2018. "Silicon-chip-based mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    2. Mengjie Yu & David Barton III & Rebecca Cheng & Christian Reimer & Prashanta Kharel & Lingyan He & Linbo Shao & Di Zhu & Yaowen Hu & Hannah R. Grant & Leif Johansson & Yoshitomo Okawachi & Alexander L, 2022. "Integrated femtosecond pulse generator on thin-film lithium niobate," Nature, Nature, vol. 612(7939), pages 252-258, December.
    3. Miles H. Anderson & Wenle Weng & Grigory Lihachev & Alexey Tikan & Junqiu Liu & Tobias J. Kippenberg, 2022. "Zero dispersion Kerr solitons in optical microresonators," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Timothy P. McKenna & Hubert S. Stokowski & Vahid Ansari & Jatadhari Mishra & Marc Jankowski & Christopher J. Sarabalis & Jason F. Herrmann & Carsten Langrock & Martin M. Fejer & Amir H. Safavi-Naeini, 2022. "Ultra-low-power second-order nonlinear optics on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Lars Lundberg & Mikael Mazur & Ali Mirani & Benjamin Foo & Jochen Schröder & Victor Torres-Company & Magnus Karlsson & Peter A. Andrekson, 2020. "Phase-coherent lightwave communications with frequency combs," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. Takuro Ideguchi & Simon Holzner & Birgitta Bernhardt & Guy Guelachvili & Nathalie Picqué & Theodor W. Hänsch, 2013. "Coherent Raman spectro-imaging with laser frequency combs," Nature, Nature, vol. 502(7471), pages 355-358, October.
    7. Cheng Wang & Mian Zhang & Mengjie Yu & Rongrong Zhu & Han Hu & Marko Loncar, 2019. "Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daowang Peng & Chenglin Gu & Zhong Zuo & Yuanfeng Di & Xing Zou & Lulu Tang & Lunhua Deng & Daping Luo & Yang Liu & Wenxue Li, 2023. "Dual-comb optical activity spectroscopy for the analysis of vibrational optical activity induced by external magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Fuchuan Lei & Zhichao Ye & Óskar B. Helgason & Attila Fülöp & Marcello Girardi & Victor Torres-Company, 2022. "Optical linewidth of soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Rui Niu & Ming Li & Shuai Wan & Yu Robert Sun & Shui-Ming Hu & Chang-Ling Zou & Guang-Can Guo & Chun-Hua Dong, 2023. "kHz-precision wavemeter based on reconfigurable microsoliton," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    6. Yong Geng & Heng Zhou & Xinjie Han & Wenwen Cui & Qiang Zhang & Boyuan Liu & Guangwei Deng & Qiang Zhou & Kun Qiu, 2022. "Coherent optical communications using coherence-cloned Kerr soliton microcombs," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Timothy P. McKenna & Hubert S. Stokowski & Vahid Ansari & Jatadhari Mishra & Marc Jankowski & Christopher J. Sarabalis & Jason F. Herrmann & Carsten Langrock & Martin M. Fejer & Amir H. Safavi-Naeini, 2022. "Ultra-low-power second-order nonlinear optics on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Kaiheng Zou & Kai Pang & Hao Song & Jintao Fan & Zhe Zhao & Haoqian Song & Runzhou Zhang & Huibin Zhou & Amir Minoofar & Cong Liu & Xinzhou Su & Nanzhe Hu & Andrew McClung & Mahsa Torfeh & Amir Arbabi, 2022. "High-capacity free-space optical communications using wavelength- and mode-division-multiplexing in the mid-infrared region," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Hubert S. Stokowski & Timothy P. McKenna & Taewon Park & Alexander Y. Hwang & Devin J. Dean & Oguz Tolga Celik & Vahid Ansari & Martin M. Fejer & Amir H. Safavi-Naeini, 2023. "Integrated quantum optical phase sensor in thin film lithium niobate," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Anton Lukashchuk & Johann Riemensberger & Maxim Karpov & Junqiu Liu & Tobias J. Kippenberg, 2022. "Dual chirped microcomb based parallel ranging at megapixel-line rates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Teng Tan & Zhongye Yuan & Hao Zhang & Guofeng Yan & Siyu Zhou & Ning An & Bo Peng & Giancarlo Soavi & Yunjiang Rao & Baicheng Yao, 2021. "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    12. Ronit Sohanpal & Haonan Ren & Li Shen & Callum Deakin & Alexander M. Heidt & Thomas W. Hawkins & John Ballato & Ursula J. Gibson & Anna C. Peacock & Zhixin Liu, 2022. "All-fibre heterogeneously-integrated frequency comb generation using silicon core fibre," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Giovanni Finco & Gaoyuan Li & David Pohl & Marc Reig Escalé & Andreas Maeder & Fabian Kaufmann & Rachel Grange, 2024. "Monolithic thin-film lithium niobate broadband spectrometer with one nanometre resolution," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Mikhail Churaev & Rui Ning Wang & Annina Riedhauser & Viacheslav Snigirev & Terence Blésin & Charles Möhl & Miles H. Anderson & Anat Siddharth & Youri Popoff & Ute Drechsler & Daniele Caimi & Simon Hö, 2023. "A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Juanjuan Lu & Danila N. Puzyrev & Vladislav V. Pankratov & Dmitry V. Skryabin & Fengyan Yang & Zheng Gong & Joshua B. Surya & Hong X. Tang, 2023. "Two-colour dissipative solitons and breathers in microresonator second-harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Edgar F. Perez & Grégory Moille & Xiyuan Lu & Jordan Stone & Feng Zhou & Kartik Srinivasan, 2023. "High-performance Kerr microresonator optical parametric oscillator on a silicon chip," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48222-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.