IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51392-9.html
   My bibliography  Save this article

High-sensitivity dual-comb and cross-comb spectroscopy across the infrared using a widely tunable and free-running optical parametric oscillator

Author

Listed:
  • Carolin P. Bauer

    (ETH Zurich)

  • Zofia A. Bejm

    (ETH Zurich)

  • Michelle K. Bollier

    (ETH Zurich)

  • Justinas Pupeikis

    (ETH Zurich)

  • Benjamin Willenberg

    (ETH Zurich)

  • Ursula Keller

    (ETH Zurich)

  • Christopher R. Phillips

    (ETH Zurich)

Abstract

Dual-comb spectroscopy (DCS) enables high-resolution measurements at high speeds without the trade-off between resolution and update rate inherent to mechanical delay scanning. However, high complexity and limited sensitivity remain significant challenges for DCS systems. We address these via a wavelength-tunable dual-comb optical parametric oscillator (OPO) combined with an up-conversion detection method. The OPO is tunable from 1300-1670 nm (signal) and 2700-5000 nm (idler). Spatial multiplexing in both the laser and OPO cavities creates a near-common path arrangement, enabling comb-line-resolved measurements in free-running operation. The narrow instantaneous bandwidth results in high power per comb-line up to 160 μW in the mid-infrared. Through intra-cavity up-conversion based on cross-comb spectroscopy, we leverage these power levels while overcoming the sensitivity limitations of direct mid-infrared detection. This approach yields a high signal-to-noise ratio (50.2 dB Hz1/2) and high dual-comb figure of merit (3.5 × 108 Hz1/2). This scheme enabled detecting ambient methane over a 3-meter path length in millisecond time scale.

Suggested Citation

  • Carolin P. Bauer & Zofia A. Bejm & Michelle K. Bollier & Justinas Pupeikis & Benjamin Willenberg & Ursula Keller & Christopher R. Phillips, 2024. "High-sensitivity dual-comb and cross-comb spectroscopy across the infrared using a widely tunable and free-running optical parametric oscillator," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51392-9
    DOI: 10.1038/s41467-024-51392-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51392-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51392-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mengjie Yu & Yoshitomo Okawachi & Austin G. Griffith & Nathalie Picqué & Michal Lipson & Alexander L. Gaeta, 2018. "Silicon-chip-based mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    2. Gustavo Villares & Andreas Hugi & Stéphane Blaser & Jérôme Faist, 2014. "Dual-comb spectroscopy based on quantum-cascade-laser frequency combs," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    3. Mingchen Liu & Robert M. Gray & Luis Costa & Charles R. Markus & Arkadev Roy & Alireza Marandi, 2023. "Mid-infrared cross-comb spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingming Nie & Kunpeng Jia & Yijun Xie & Shining Zhu & Zhenda Xie & Shu-Wei Huang, 2022. "Synthesized spatiotemporal mode-locking and photonic flywheel in multimode mesoresonators," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Rui Niu & Ming Li & Shuai Wan & Yu Robert Sun & Shui-Ming Hu & Chang-Ling Zou & Guang-Can Guo & Chun-Hua Dong, 2023. "kHz-precision wavemeter based on reconfigurable microsoliton," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Daowang Peng & Chenglin Gu & Zhong Zuo & Yuanfeng Di & Xing Zou & Lulu Tang & Lunhua Deng & Daping Luo & Yang Liu & Wenxue Li, 2023. "Dual-comb optical activity spectroscopy for the analysis of vibrational optical activity induced by external magnetic field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Qiang Wang & Zhen Wang & Hui Zhang & Shoulin Jiang & Yingying Wang & Wei Jin & Wei Ren, 2022. "Dual-comb photothermal spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Rebecca Cheng & Mengjie Yu & Amirhassan Shams-Ansari & Yaowen Hu & Christian Reimer & Mian Zhang & Marko Lončar, 2024. "Frequency comb generation via synchronous pumped χ(3) resonator on thin-film lithium niobate," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Kaiheng Zou & Kai Pang & Hao Song & Jintao Fan & Zhe Zhao & Haoqian Song & Runzhou Zhang & Huibin Zhou & Amir Minoofar & Cong Liu & Xinzhou Su & Nanzhe Hu & Andrew McClung & Mahsa Torfeh & Amir Arbabi, 2022. "High-capacity free-space optical communications using wavelength- and mode-division-multiplexing in the mid-infrared region," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Teng Tan & Zhongye Yuan & Hao Zhang & Guofeng Yan & Siyu Zhou & Ning An & Bo Peng & Giancarlo Soavi & Yunjiang Rao & Baicheng Yao, 2021. "Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Borislav Hinkov & Florian Pilat & Laurin Lux & Patricia L. Souza & Mauro David & Andreas Schwaighofer & Daniela Ristanić & Benedikt Schwarz & Hermann Detz & Aaron M. Andrews & Bernhard Lendl & Gottfri, 2022. "A mid-infrared lab-on-a-chip for dynamic reaction monitoring," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Prati, F. & Lugiato, L.A. & Gatti, A. & Columbo, L. & Silvestri, C. & Gioannini, M. & Brambilla, M. & Piccardo, M. & Capasso, F., 2021. "Global and localised temporal structures in driven ring quantum cascade lasers," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    11. Mingchen Liu & Robert M. Gray & Luis Costa & Charles R. Markus & Arkadev Roy & Alireza Marandi, 2023. "Mid-infrared cross-comb spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51392-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.