IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39047-7.html
   My bibliography  Save this article

A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform

Author

Listed:
  • Mikhail Churaev

    (Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL)
    EPFL)

  • Rui Ning Wang

    (Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL)
    EPFL)

  • Annina Riedhauser

    (IBM Research - Europe, Zurich)

  • Viacheslav Snigirev

    (Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL)
    EPFL)

  • Terence Blésin

    (Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL)
    EPFL)

  • Charles Möhl

    (IBM Research - Europe, Zurich)

  • Miles H. Anderson

    (Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL)
    EPFL)

  • Anat Siddharth

    (Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL)
    EPFL)

  • Youri Popoff

    (IBM Research - Europe, Zurich
    Integrated Systems Laboratory, Swiss Federal Institute of Technology Zurich (ETH Zürich))

  • Ute Drechsler

    (IBM Research - Europe, Zurich)

  • Daniele Caimi

    (IBM Research - Europe, Zurich)

  • Simon Hönl

    (IBM Research - Europe, Zurich)

  • Johann Riemensberger

    (Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL)
    EPFL)

  • Junqiu Liu

    (Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL)
    EPFL)

  • Paul Seidler

    (IBM Research - Europe, Zurich)

  • Tobias J. Kippenberg

    (Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL)
    EPFL)

Abstract

The availability of thin-film lithium niobate on insulator (LNOI) and advances in processing have led to the emergence of fully integrated LiNbO3 electro-optic devices. Yet to date, LiNbO3 photonic integrated circuits have mostly been fabricated using non-standard etching techniques and partially etched waveguides, that lack the reproducibility achieved in silicon photonics. Widespread application of thin-film LiNbO3 requires a reliable solution with precise lithographic control. Here we demonstrate a heterogeneously integrated LiNbO3 photonic platform employing wafer-scale bonding of thin-film LiNbO3 to silicon nitride (Si3N4) photonic integrated circuits. The platform maintains the low propagation loss (

Suggested Citation

  • Mikhail Churaev & Rui Ning Wang & Annina Riedhauser & Viacheslav Snigirev & Terence Blésin & Charles Möhl & Miles H. Anderson & Anat Siddharth & Youri Popoff & Ute Drechsler & Daniele Caimi & Simon Hö, 2023. "A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39047-7
    DOI: 10.1038/s41467-023-39047-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39047-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39047-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qianfan Xu & Bradley Schmidt & Sameer Pradhan & Michal Lipson, 2005. "Micrometre-scale silicon electro-optic modulator," Nature, Nature, vol. 435(7040), pages 325-327, May.
    2. Mian Zhang & Brandon Buscaino & Cheng Wang & Amirhassan Shams-Ansari & Christian Reimer & Rongrong Zhu & Joseph M. Kahn & Marko Lončar, 2019. "Broadband electro-optic frequency comb generation in a lithium niobate microring resonator," Nature, Nature, vol. 568(7752), pages 373-377, April.
    3. Cheng Wang & Mian Zhang & Mengjie Yu & Rongrong Zhu & Han Hu & Marko Loncar, 2019. "Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    4. Junqiu Liu & Guanhao Huang & Rui Ning Wang & Jijun He & Arslan S. Raja & Tianyi Liu & Nils J. Engelsen & Tobias J. Kippenberg, 2021. "High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Cheng Wang & Mian Zhang & Xi Chen & Maxime Bertrand & Amirhassan Shams-Ansari & Sethumadhavan Chandrasekhar & Peter Winzer & Marko Lončar, 2018. "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, Nature, vol. 562(7725), pages 101-104, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zihan Li & Rui Ning Wang & Grigory Lihachev & Junyin Zhang & Zelin Tan & Mikhail Churaev & Nikolai Kuznetsov & Anat Siddharth & Mohammad J. Bereyhi & Johann Riemensberger & Tobias J. Kippenberg, 2023. "High density lithium niobate photonic integrated circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy P. McKenna & Hubert S. Stokowski & Vahid Ansari & Jatadhari Mishra & Marc Jankowski & Christopher J. Sarabalis & Jason F. Herrmann & Carsten Langrock & Martin M. Fejer & Amir H. Safavi-Naeini, 2022. "Ultra-low-power second-order nonlinear optics on a chip," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Giovanni Finco & Gaoyuan Li & David Pohl & Marc Reig Escalé & Andreas Maeder & Fabian Kaufmann & Rachel Grange, 2024. "Monolithic thin-film lithium niobate broadband spectrometer with one nanometre resolution," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Emma Lomonte & Martin A. Wolff & Fabian Beutel & Simone Ferrari & Carsten Schuck & Wolfram H. P. Pernice & Francesco Lenzini, 2021. "Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Shaofu Xu & Jing Wang & Sicheng Yi & Weiwen Zou, 2022. "High-order tensor flow processing using integrated photonic circuits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. I-Tung Chen & Bingzhao Li & Seokhyeong Lee & Srivatsa Chakravarthi & Kai-Mei Fu & Mo Li, 2023. "Optomechanical ring resonator for efficient microwave-optical frequency conversion," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Dmitry Kazakov & Theodore P. Letsou & Maximilian Beiser & Yiyang Zhi & Nikola Opačak & Marco Piccardo & Benedikt Schwarz & Federico Capasso, 2024. "Active mid-infrared ring resonators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Hubert S. Stokowski & Timothy P. McKenna & Taewon Park & Alexander Y. Hwang & Devin J. Dean & Oguz Tolga Celik & Vahid Ansari & Martin M. Fejer & Amir H. Safavi-Naeini, 2023. "Integrated quantum optical phase sensor in thin film lithium niobate," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Zihan Li & Rui Ning Wang & Grigory Lihachev & Junyin Zhang & Zelin Tan & Mikhail Churaev & Nikolai Kuznetsov & Anat Siddharth & Mohammad J. Bereyhi & Johann Riemensberger & Tobias J. Kippenberg, 2023. "High density lithium niobate photonic integrated circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Yuan Yuan & Yiwei Peng & Wayne V. Sorin & Stanley Cheung & Zhihong Huang & Di Liang & Marco Fiorentino & Raymond G. Beausoleil, 2024. "A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Hsuan-Hao Lu & Karthik V. Myilswamy & Ryan S. Bennink & Suparna Seshadri & Mohammed S. Alshaykh & Junqiu Liu & Tobias J. Kippenberg & Daniel E. Leaird & Andrew M. Weiner & Joseph M. Lukens, 2022. "Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Xinyu Ma & Zhaoyu Cai & Chijie Zhuang & Xiangdong Liu & Zhecheng Zhang & Kewei Liu & Bo Cao & Jinliang He & Changxi Yang & Chengying Bao & Rong Zeng, 2024. "Integrated microcavity electric field sensors using Pound-Drever-Hall detection," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Kazuma Taki & Naoki Sekine & Kouhei Watanabe & Yuto Miyatake & Tomohiro Akazawa & Hiroya Sakumoto & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2024. "Nonvolatile optical phase shift in ferroelectric hafnium zirconium oxide," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Shahab Abdollahi & Mathieu Ladouce & Pablo Marin-Palomo & Martin Virte, 2024. "Agile THz-range spectral multiplication of frequency combs using a multi-wavelength laser," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Chengying Bao & Zhiquan Yuan & Lue Wu & Myoung-Gyun Suh & Heming Wang & Qiang Lin & Kerry J. Vahala, 2021. "Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Wei-Che Hsu & Nabila Nujhat & Benjamin Kupp & John F. Conley & Haisheng Rong & Ranjeet Kumar & Alan X. Wang, 2024. "Sub-volt high-speed silicon MOSCAP microring modulator driven by high-mobility conductive oxide," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Bitao Shen & Haowen Shu & Weiqiang Xie & Ruixuan Chen & Zhi Liu & Zhangfeng Ge & Xuguang Zhang & Yimeng Wang & Yunhao Zhang & Buwen Cheng & Shaohua Yu & Lin Chang & Xingjun Wang, 2023. "Harnessing microcomb-based parallel chaos for random number generation and optical decision making," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Xinyi Zhu & Benjamin Crockett & Connor M. L. Rowe & Hao Sun & José Azaña, 2024. "Agile manipulation of the time-frequency distribution of high-speed electromagnetic waves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Grigory Lihachev & Johann Riemensberger & Wenle Weng & Junqiu Liu & Hao Tian & Anat Siddharth & Viacheslav Snigirev & Vladimir Shadymov & Andrey Voloshin & Rui Ning Wang & Jijun He & Sunil A. Bhave & , 2022. "Low-noise frequency-agile photonic integrated lasers for coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39047-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.