IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52929-8.html
   My bibliography  Save this article

Ultra-high precision nano additive manufacturing of metal oxide semiconductors via multi-photon lithography

Author

Listed:
  • Chun Cao

    (Hangzhou Dianzi University)

  • Xianmeng Xia

    (Zhejiang Lab)

  • Xiaoming Shen

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center)

  • Xiaobing Wang

    (Zhejiang Lab)

  • Zhenyao Yang

    (Zhejiang Lab)

  • Qiulan Liu

    (Zhejiang University)

  • Chenliang Ding

    (Zhejiang University)

  • Dazhao Zhu

    (Zhejiang University)

  • Cuifang Kuang

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center
    Zhejiang University)

  • Xu Liu

    (ZJU-Hangzhou Global Scientific and Technological Innovation Center
    Zhejiang University)

Abstract

As a basic component of the versatile semiconductor devices, metal oxides play a critical role in modern electronic information industry. However, ultra-high precision nanopatterning of metal oxides often involves multi-step lithography and transfer process, which is time-consuming and costly. Here, we report a strategy, using metal-organic compounds as solid precursor photoresist for multi-photon lithography and post-sintering, to realize ultra-high precision additive manufacturing of metal oxides. As a result, we gain metal oxides including ZnO, CuO and ZrO2 with a critical dimension of 35 nm, which sets a benchmark for additive manufacturing of metal oxides. Besides, atomic doping can be easily accomplished by including the target element in precursor photoresist, and heterogeneous structures can also be created by multiple multi-photon lithography, allowing this strategy to accommodate the requirements of various semiconductor devices. For instance, we fabricate an ZnO photodetector by the proposed strategy.

Suggested Citation

  • Chun Cao & Xianmeng Xia & Xiaoming Shen & Xiaobing Wang & Zhenyao Yang & Qiulan Liu & Chenliang Ding & Dazhao Zhu & Cuifang Kuang & Xu Liu, 2024. "Ultra-high precision nano additive manufacturing of metal oxide semiconductors via multi-photon lithography," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52929-8
    DOI: 10.1038/s41467-024-52929-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52929-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52929-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xi Liu & Leilei Gu & Qianpeng Zhang & Jiyuan Wu & Yunze Long & Zhiyong Fan, 2014. "All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    2. Liang Yang & Hongrong Hu & Alexander Scholz & Florian Feist & Gabriel Cadilha Marques & Steven Kraus & Niklas Maximilian Bojanowski & Eva Blasco & Christopher Barner-Kowollik & Jasmin Aghassi-Hagmann , 2023. "Laser printed microelectronics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Max A. Saccone & Rebecca A. Gallivan & Kai Narita & Daryl W. Yee & Julia R. Greer, 2022. "Additive manufacturing of micro-architected metals via hydrogel infusion," Nature, Nature, vol. 612(7941), pages 685-690, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bingyan Liu & Shirong Liu & Vasanthan Devaraj & Yuxiang Yin & Yueqi Zhang & Jingui Ai & Yaochen Han & Jicheng Feng, 2023. "Metal 3D nanoprinting with coupled fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ying Hong & Shiyuan Liu & Xiaodan Yang & Wang Hong & Yao Shan & Biao Wang & Zhuomin Zhang & Xiaodong Yan & Weikang Lin & Xuemu Li & Zehua Peng & Xiaote Xu & Zhengbao Yang, 2024. "A bioinspired surface tension-driven route toward programmed cellular ceramics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Olga Guselnikova & Andrii Trelin & Yunqing Kang & Pavel Postnikov & Makoto Kobashi & Asuka Suzuki & Lok Kumar Shrestha & Joel Henzie & Yusuke Yamauchi, 2024. "Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Junfang Zhang & Rong Tan & Yuxin Liu & Matteo Albino & Weinan Zhang & Molly M. Stevens & Felix F. Loeffler, 2024. "Printed smart devices for anti-counterfeiting allowing precise identification with household equipment," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Chenhao Gao & Keyi Zhong & Xuan Fang & Dan Fang & Hongbin Zhao & Dengkui Wang & Bobo Li & Yingjiao Zhai & Xueying Chu & Jinhua Li & Xiaohua Wang, 2021. "Brief Review of Photocatalysis and Photoresponse Properties of ZnO–Graphene Nanocomposites," Energies, MDPI, vol. 14(19), pages 1-25, October.
    6. Sharifi, Farrokh & Ghobadian, Sasan & Cavalcanti, Flavia R. & Hashemi, Nastaran, 2015. "Paper-based devices for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1453-1472.
    7. Sizhe Huang & Xinyue Liu & Shaoting Lin & Christopher Glynn & Kayla Felix & Atharva Sahasrabudhe & Collin Maley & Jingyi Xu & Weixuan Chen & Eunji Hong & Alfred J. Crosby & Qianbin Wang & Siyuan Rao, 2024. "Control of polymers’ amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Xianglong Lyu & Zhiqiang Zheng & Anitha Shiva & Mertcan Han & Cem Balda Dayan & Mingchao Zhang & Metin Sitti, 2024. "Capillary trapping of various nanomaterials on additively manufactured scaffolds for 3D micro-/nanofabrication," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52929-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.