IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47763-x.html
   My bibliography  Save this article

Alternative splicing controls teneurin-3 compact dimer formation for neuronal recognition

Author

Listed:
  • Christos Gogou

    (Delft University of Technology)

  • J. Wouter Beugelink

    (Utrecht University)

  • Cátia P. Frias

    (Delft University of Technology)

  • Leanid Kresik

    (Delft University of Technology)

  • Natalia Jaroszynska

    (Guy’s Campus)

  • Uwe Drescher

    (Guy’s Campus
    King’s College London)

  • Bert J. C. Janssen

    (Utrecht University)

  • Robert Hindges

    (Guy’s Campus
    King’s College London)

  • Dimphna H. Meijer

    (Delft University of Technology)

Abstract

Neuronal network formation is facilitated by recognition between synaptic cell adhesion molecules at the cell surface. Alternative splicing of cell adhesion molecules provides additional specificity in forming neuronal connections. For the teneurin family of cell adhesion molecules, alternative splicing of the EGF-repeats and NHL domain controls synaptic protein-protein interactions. Here we present cryo-EM structures of the compact dimeric ectodomain of two teneurin-3 isoforms that harbour the splice insert in the EGF-repeats. This dimer is stabilised by an EGF8-ABD contact between subunits. Cryo-EM reconstructions of all four splice variants, together with SAXS and negative stain EM, reveal compacted dimers for each, with variant-specific dimeric arrangements. This results in specific trans-cellular interactions, as tested in cell clustering and stripe assays. The compact conformations provide a structural basis for teneurin homo- and heterophilic interactions. Altogether, our findings demonstrate how alternative splicing results in rearrangements of the dimeric subunits, influencing neuronal recognition and likely circuit wiring.

Suggested Citation

  • Christos Gogou & J. Wouter Beugelink & Cátia P. Frias & Leanid Kresik & Natalia Jaroszynska & Uwe Drescher & Bert J. C. Janssen & Robert Hindges & Dimphna H. Meijer, 2024. "Alternative splicing controls teneurin-3 compact dimer formation for neuronal recognition," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47763-x
    DOI: 10.1038/s41467-024-47763-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47763-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47763-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charlotte H. Coles & Nikolaos Mitakidis & Peng Zhang & Jonathan Elegheert & Weixian Lu & Andrew W. Stoker & Terunaga Nakagawa & Ann Marie Craig & E. Yvonne Jones & A. Radu Aricescu, 2014. "Structural basis for extracellular cis and trans RPTPσ signal competition in synaptogenesis," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    2. Verity A. Jackson & Dimphna H. Meijer & Maria Carrasquero & Laura S. Bezouwen & Edward D. Lowe & Colin Kleanthous & Bert J. C. Janssen & Elena Seiradake, 2018. "Structures of Teneurin adhesion receptors reveal an ancient fold for cell-cell interaction," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    3. Dominic S. Berns & Laura A. DeNardo & Daniel T. Pederick & Liqun Luo, 2018. "Teneurin-3 controls topographic circuit assembly in the hippocampus," Nature, Nature, vol. 554(7692), pages 328-333, February.
    4. Xuchen Zhang & Pei-Yi Lin & Kif Liakath-Ali & Thomas C. Südhof, 2022. "Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Brian A Lloyd & Ying Han & Rebecca Roth & Bo Zhang & Jason Aoto, 2023. "Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    6. Jingxian Li & Yuan Xie & Shaleeka Cornelius & Xian Jiang & Richard Sando & Szymon P. Kordon & Man Pan & Katherine Leon & Thomas C. Südhof & Minglei Zhao & Demet Araç, 2020. "Alternative splicing controls teneurin-latrophilin interaction and synapse specificity by a shape-shifting mechanism," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    7. Zhaohan Lin & Jianmei Liu & Huandi Ding & Fei Xu & Heli Liu, 2018. "Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    8. Atsushi Yamagata & Tomoyuki Yoshida & Yusuke Sato & Sakurako Goto-Ito & Takeshi Uemura & Asami Maeda & Tomoko Shiroshima & Shiho Iwasawa-Okamoto & Hisashi Mori & Masayoshi Mishina & Shuya Fukai, 2015. "Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ–IL1RAPL1/IL-1RAcP for synaptic differentiation," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    9. Ji Won Um & Kee Hun Kim & Beom Seok Park & Yeonsoo Choi & Doyoun Kim & Cha Yeon Kim & Soo Jin Kim & Minhye Kim & Ji Seung Ko & Seong-Gyu Lee & Gayoung Choii & Jungyong Nam & Won Do Heo & Eunjoon Kim &, 2014. "Structural basis for LAR-RPTP/Slitrk complex-mediated synaptic adhesion," Nature Communications, Nature, vol. 5(1), pages 1-16, December.
    10. Verity A. Jackson & Shahid Mehmood & Matthieu Chavent & Pietro Roversi & Maria Carrasquero & Daniel del Toro & Goenuel Seyit-Bremer & Fanomezana M. Ranaivoson & Davide Comoletti & Mark S. P. Sansom & , 2016. "Super-complexes of adhesion GPCRs and neural guidance receptors," Nature Communications, Nature, vol. 7(1), pages 1-13, September.
    11. Rob Meijers & Roland Puettmann-Holgado & Georgios Skiniotis & Jin-huan Liu & Thomas Walz & Jia-huai Wang & Dietmar Schmucker, 2007. "Structural basis of Dscam isoform specificity," Nature, Nature, vol. 449(7161), pages 487-491, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szymon P. Kordon & Przemysław Dutka & Justyna M. Adamska & Sumit J. Bandekar & Katherine Leon & Satchal K. Erramilli & Brock Adams & Jingxian Li & Anthony A. Kossiakoff & Demet Araç, 2023. "Isoform- and ligand-specific modulation of the adhesion GPCR ADGRL3/Latrophilin3 by a synthetic binder," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Xuchen Zhang & Pei-Yi Lin & Kif Liakath-Ali & Thomas C. Südhof, 2022. "Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. F. M. Houghton & S. E. Adams & A. S. Ríos & L. Masino & A. G. Purkiss & D. C. Briggs & F. Ledda & N. Q. McDonald, 2023. "Architecture and regulation of a GDNF-GFRα1 synaptic adhesion assembly," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Shiheng Liu & Xian Xia & Eric Calvo & Z. Hong Zhou, 2023. "Native structure of mosquito salivary protein uncovers domains relevant to pathogen transmission," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Kyung Ah Han & Taek-Han Yoon & Jinhu Kim & Jusung Lee & Ju Yeon Lee & Gyubin Jang & Ji Won Um & Jong Kyoung Kim & Jaewon Ko, 2024. "Specification of neural circuit architecture shaped by context-dependent patterned LAR-RPTP microexons," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Alessandra Sclip & Thomas C. Südhof, 2023. "Combinatorial expression of neurexins and LAR-type phosphotyrosine phosphatase receptors instructs assembly of a cerebellar circuit," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Jie Cheng & Yamei Yu & Xingyu Wang & Xi Zheng & Ting Liu & Daojun Hu & Yongfeng Jin & Ying Lai & Tian-Min Fu & Qiang Chen, 2023. "Structural basis for the self-recognition of sDSCAM in Chelicerata," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Arpiar Saunders & Kee Wui Huang & Cassandra Vondrak & Christina Hughes & Karina Smolyar & Harsha Sen & Adrienne C. Philson & James Nemesh & Alec Wysoker & Seva Kashin & Bernardo L. Sabatini & Steven A, 2022. "Ascertaining cells’ synaptic connections and RNA expression simultaneously with barcoded rabies virus libraries," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Amaia González-Magaña & Igor Tascón & Jon Altuna-Alvarez & María Queralt-Martín & Jake Colautti & Carmen Velázquez & Maialen Zabala & Jessica Rojas-Palomino & Marité Cárdenas & Antonio Alcaraz & John , 2023. "Structural and functional insights into the delivery of a bacterial Rhs pore-forming toxin to the membrane," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Dukas Jurėnas & Leonardo Talachia Rosa & Martial Rey & Julia Chamot-Rooke & Rémi Fronzes & Eric Cascales, 2021. "Mounting, structure and autocleavage of a type VI secretion-associated Rhs polymorphic toxin," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47763-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.