IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43585-5.html
   My bibliography  Save this article

Structural and functional insights into the delivery of a bacterial Rhs pore-forming toxin to the membrane

Author

Listed:
  • Amaia González-Magaña

    (Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)
    University of the Basque Country)

  • Igor Tascón

    (Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)
    Ikerbasque, Basque Foundation for Science)

  • Jon Altuna-Alvarez

    (Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB))

  • María Queralt-Martín

    (University Jaume I)

  • Jake Colautti

    (McMaster University)

  • Carmen Velázquez

    (Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)
    University of the Basque Country)

  • Maialen Zabala

    (Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)
    University of the Basque Country)

  • Jessica Rojas-Palomino

    (University Jaume I)

  • Marité Cárdenas

    (Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)
    Ikerbasque, Basque Foundation for Science)

  • Antonio Alcaraz

    (University Jaume I)

  • John C. Whitney

    (McMaster University)

  • Iban Ubarretxena-Belandia

    (Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)
    Ikerbasque, Basque Foundation for Science)

  • David Albesa-Jové

    (Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB)
    University of the Basque Country
    Ikerbasque, Basque Foundation for Science)

Abstract

Bacterial competition is a significant driver of toxin polymorphism, which allows continual compensatory evolution between toxins and the resistance developed to overcome their activity. Bacterial Rearrangement hot spot (Rhs) proteins represent a widespread example of toxin polymorphism. Here, we present the 2.45 Å cryo-electron microscopy structure of Tse5, an Rhs protein central to Pseudomonas aeruginosa type VI secretion system-mediated bacterial competition. This structural insight, coupled with an extensive array of biophysical and genetic investigations, unravels the multifaceted functional mechanisms of Tse5. The data suggest that interfacial Tse5-membrane binding delivers its encapsulated pore-forming toxin fragment to the target bacterial membrane, where it assembles pores that cause cell depolarisation and, ultimately, bacterial death.

Suggested Citation

  • Amaia González-Magaña & Igor Tascón & Jon Altuna-Alvarez & María Queralt-Martín & Jake Colautti & Carmen Velázquez & Maialen Zabala & Jessica Rojas-Palomino & Marité Cárdenas & Antonio Alcaraz & John , 2023. "Structural and functional insights into the delivery of a bacterial Rhs pore-forming toxin to the membrane," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43585-5
    DOI: 10.1038/s41467-023-43585-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43585-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43585-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alistair B. Russell & Rachel D. Hood & Nhat Khai Bui & Michele LeRoux & Waldemar Vollmer & Joseph D. Mougous, 2011. "Type VI secretion delivers bacteriolytic effectors to target cells," Nature, Nature, vol. 475(7356), pages 343-347, July.
    2. Jason N. Busby & Santosh Panjikar & Michael J. Landsberg & Mark R. H. Hurst & J. Shaun Lott, 2013. "The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device," Nature, Nature, vol. 501(7468), pages 547-550, September.
    3. Tong-Tong Pei & Hao Li & Xiaoye Liang & Zeng-Hang Wang & Guangfeng Liu & Li-Li Wu & Haeun Kim & Zhiping Xie & Ming Yu & Shuangjun Lin & Ping Xu & Tao G. Dong, 2020. "Publisher Correction: Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    4. Verity A. Jackson & Dimphna H. Meijer & Maria Carrasquero & Laura S. Bezouwen & Edward D. Lowe & Colin Kleanthous & Bert J. C. Janssen & Elena Seiradake, 2018. "Structures of Teneurin adhesion receptors reveal an ancient fold for cell-cell interaction," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    5. Tong-Tong Pei & Hao Li & Xiaoye Liang & Zeng-Hang Wang & Guangfeng Liu & Li-Li Wu & Haeun Kim & Zhiping Xie & Ming Yu & Shuangjun Lin & Ping Xu & Tao G. Dong, 2020. "Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brooke K. Hayes & Marina Harper & Hariprasad Venugopal & Jessica M. Lewis & Amy Wright & Han-Chung Lee & Joel R. Steele & David L. Steer & Ralf B. Schittenhelm & John D. Boyce & Sheena McGowan, 2024. "Structure of a Rhs effector clade domain provides mechanistic insights into type VI secretion system toxin delivery," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Dukas Jurėnas & Leonardo Talachia Rosa & Martial Rey & Julia Chamot-Rooke & Rémi Fronzes & Eric Cascales, 2021. "Mounting, structure and autocleavage of a type VI secretion-associated Rhs polymorphic toxin," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Shiheng Liu & Xian Xia & Eric Calvo & Z. Hong Zhou, 2023. "Native structure of mosquito salivary protein uncovers domains relevant to pathogen transmission," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Katarzyna Kanarek & Chaya Mushka Fridman & Eran Bosis & Dor Salomon, 2023. "The RIX domain defines a class of polymorphic T6SS effectors and secreted adaptors," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Christos Gogou & J. Wouter Beugelink & Cátia P. Frias & Leanid Kresik & Natalia Jaroszynska & Uwe Drescher & Bert J. C. Janssen & Robert Hindges & Dimphna H. Meijer, 2024. "Alternative splicing controls teneurin-3 compact dimer formation for neuronal recognition," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Toshiki Nagakubo & Tatsuya Nishiyama & Tatsuya Yamamoto & Nobuhiko Nomura & Masanori Toyofuku, 2024. "Contractile injection systems facilitate sporogenic differentiation of Streptomyces davawensis through the action of a phage tapemeasure protein-related effector," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Dandan Wang & Lingfang Zhu & Xiangkai Zhen & Daoyan Yang & Changfu Li & Yating Chen & Huannan Wang & Yichen Qu & Xiaozhen Liu & Yanling Yin & Huawei Gu & Lei Xu & Chuanxing Wan & Yao Wang & Songying O, 2022. "A secreted effector with a dual role as a toxin and as a transcriptional factor," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Alexander Belyy & Florian Lindemann & Daniel Roderer & Johanna Funk & Benjamin Bardiaux & Jonas Protze & Peter Bieling & Hartmut Oschkinat & Stefan Raunser, 2022. "Mechanism of threonine ADP-ribosylation of F-actin by a Tc toxin," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Xuchen Zhang & Pei-Yi Lin & Kif Liakath-Ali & Thomas C. Südhof, 2022. "Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Massimiliano Marazzato & Daniela Scribano & Meysam Sarshar & Francesca Brunetti & Silvia Fillo & Antonella Fortunato & Florigio Lista & Anna Teresa Palamara & Carlo Zagaglia & Cecilia Ambrosi, 2022. "Genetic Diversity of Antimicrobial Resistance and Key Virulence Features in Two Extensively Drug-Resistant Acinetobacter baumannii Isolates," IJERPH, MDPI, vol. 19(5), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43585-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.