IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38205-1.html
   My bibliography  Save this article

Structural basis for the self-recognition of sDSCAM in Chelicerata

Author

Listed:
  • Jie Cheng

    (Sichuan University)

  • Yamei Yu

    (West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy)

  • Xingyu Wang

    (West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy)

  • Xi Zheng

    (Sichuan University
    Sichuan University)

  • Ting Liu

    (West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy)

  • Daojun Hu

    (West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy)

  • Yongfeng Jin

    (Zhejiang University)

  • Ying Lai

    (Sichuan University)

  • Tian-Min Fu

    (The Ohio State University
    The Ohio State University Comprehensive Cancer Center)

  • Qiang Chen

    (West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy)

Abstract

To create a functional neural circuit, neurons develop a molecular identity to discriminate self from non-self. The invertebrate Dscam family and vertebrate Pcdh family are implicated in determining synaptic specificity. Recently identified in Chelicerata, a shortened Dscam (sDscam) has been shown to resemble the isoform-generating characters of both Dscam and Pcdh and represent an evolutionary transition. Here we presented the molecular details of sDscam self-recognition via both trans and cis interactions using X-ray crystallographic data and functional assays. Based on our results, we proposed a molecular zipper model for the assemblies of sDscam to mediate cell-cell recognition. In this model, sDscam utilized FNIII domain to form side-by-side interactions with neighboring molecules in the same cell while established hand-in-hand interactions via Ig1 domain with molecules from another cell around. Together, our study provided a framework for understanding the assembly, recognition, and evolution of sDscam.

Suggested Citation

  • Jie Cheng & Yamei Yu & Xingyu Wang & Xi Zheng & Ting Liu & Daojun Hu & Yongfeng Jin & Ying Lai & Tian-Min Fu & Qiang Chen, 2023. "Structural basis for the self-recognition of sDSCAM in Chelicerata," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38205-1
    DOI: 10.1038/s41467-023-38205-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38205-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38205-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Tom Maniatis & Bosiljka Tasic, 2002. "Alternative pre-mRNA splicing and proteome expansion in metazoans," Nature, Nature, vol. 418(6894), pages 236-243, July.
    3. Julie L. Lefebvre & Dimitar Kostadinov & Weisheng V. Chen & Tom Maniatis & Joshua R. Sanes, 2012. "Protocadherins mediate dendritic self-avoidance in the mammalian nervous system," Nature, Nature, vol. 488(7412), pages 517-521, August.
    4. Daisuke Hattori & Yi Chen & Benjamin J. Matthews & Lukasz Salwinski & Chiara Sabatti & Wesley B. Grueber & S. Lawrence Zipursky, 2009. "Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms," Nature, Nature, vol. 461(7264), pages 644-648, October.
    5. Julia Brasch & Kerry M. Goodman & Alex J. Noble & Micah Rapp & Seetha Mannepalli & Fabiana Bahna & Venkata P. Dandey & Tristan Bepler & Bonnie Berger & Tom Maniatis & Clinton S. Potter & Bridget Carra, 2019. "Visualization of clustered protocadherin neuronal self-recognition complexes," Nature, Nature, vol. 569(7755), pages 280-283, May.
    6. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    7. Yuan Yue & Yijun Meng & Hongru Ma & Shouqing Hou & Guozheng Cao & Weiling Hong & Yang Shi & Pengjuan Guo & Baoping Liu & Feng Shi & Yun Yang & Yongfeng Jin, 2016. "A large family of Dscam genes with tandemly arrayed 5′ cassettes in Chelicerata," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    8. Rob Meijers & Roland Puettmann-Holgado & Georgios Skiniotis & Jin-huan Liu & Thomas Walz & Jia-huai Wang & Dietmar Schmucker, 2007. "Structural basis of Dscam isoform specificity," Nature, Nature, vol. 449(7161), pages 487-491, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elliot Medina & Yathreb Easa & Daniel K. Lester & Eric K. Lau & David Sprinzak & Vincent C. Luca, 2023. "Structure of the planar cell polarity cadherins Fat4 and Dachsous1," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    6. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Jun-Yu Si & Yuan-Mei Chen & Ye-Hui Sun & Meng-Xue Gu & Mei-Ling Huang & Lu-Lu Shi & Xiao Yu & Xiao Yang & Qing Xiong & Cheng-Bao Ma & Peng Liu & Zheng-Li Shi & Huan Yan, 2024. "Sarbecovirus RBD indels and specific residues dictating multi-species ACE2 adaptiveness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    11. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Ahrum Son & Hyunsoo Kim & Jolene K. Diedrich & Casimir Bamberger & Daniel B. McClatchy & Stuart A. Lipton & John R. Yates, 2024. "Using in vivo intact structure for system-wide quantitative analysis of changes in proteins," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    14. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Mindaugas Margelevičius, 2024. "GTalign: spatial index-driven protein structure alignment, superposition, and search," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38205-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.