IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43148-8.html
   My bibliography  Save this article

Architecture and regulation of a GDNF-GFRα1 synaptic adhesion assembly

Author

Listed:
  • F. M. Houghton

    (The Francis Crick Institute)

  • S. E. Adams

    (The Francis Crick Institute
    Vertex Pharmaceuticals)

  • A. S. Ríos

    (Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires)

  • L. Masino

    (The Francis Crick Institute)

  • A. G. Purkiss

    (The Francis Crick Institute)

  • D. C. Briggs

    (The Francis Crick Institute)

  • F. Ledda

    (Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires)

  • N. Q. McDonald

    (The Francis Crick Institute
    Birkbeck College)

Abstract

Glial-cell line derived neurotrophic factor (GDNF) bound to its co-receptor GFRα1 stimulates the RET receptor tyrosine kinase, promoting neuronal survival and neuroprotection. The GDNF-GFRα1 complex also supports synaptic cell adhesion independently of RET. Here, we describe the structure of a decameric GDNF-GFRα1 assembly determined by crystallography and electron microscopy, revealing two GFRα1 pentamers bridged by five GDNF dimers. We reconsitituted the assembly between adhering liposomes and used cryo-electron tomography to visualize how the complex fulfils its membrane adhesion function. The GFRα1:GFRα1 pentameric interface was further validated both in vitro by native PAGE and in cellulo by cell-clustering and dendritic spine assays. Finally, we provide biochemical and cell-based evidence that RET and heparan sulfate cooperate to prevent assembly of the adhesion complex by competing for the adhesion interface. Our results provide a mechanistic framework to understand GDNF-driven cell adhesion, its relationship to trophic signalling, and the central role played by GFRα1.

Suggested Citation

  • F. M. Houghton & S. E. Adams & A. S. Ríos & L. Masino & A. G. Purkiss & D. C. Briggs & F. Ledda & N. Q. McDonald, 2023. "Architecture and regulation of a GDNF-GFRα1 synaptic adhesion assembly," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43148-8
    DOI: 10.1038/s41467-023-43148-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43148-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43148-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charlotte H. Coles & Nikolaos Mitakidis & Peng Zhang & Jonathan Elegheert & Weixian Lu & Andrew W. Stoker & Terunaga Nakagawa & Ann Marie Craig & E. Yvonne Jones & A. Radu Aricescu, 2014. "Structural basis for extracellular cis and trans RPTPσ signal competition in synaptogenesis," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    2. Jer-Yuan Hsu & Suzanne Crawley & Michael Chen & Dina A. Ayupova & Darrin A. Lindhout & Jared Higbee & Alan Kutach & William Joo & Zhengyu Gao & Diana Fu & Carmen To & Kalyani Mondal & Betty Li & Avant, 2017. "Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15," Nature, Nature, vol. 550(7675), pages 255-259, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christos Gogou & J. Wouter Beugelink & Cátia P. Frias & Leanid Kresik & Natalia Jaroszynska & Uwe Drescher & Bert J. C. Janssen & Robert Hindges & Dimphna H. Meijer, 2024. "Alternative splicing controls teneurin-3 compact dimer formation for neuronal recognition," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Qingtao Sun & Daniëlle Lisdonk & Miriam Ferrer & Bruno Gegenhuber & Melody Wu & Youngkyu Park & David A. Tuveson & Jessica Tollkuhn & Tobias Janowitz & Bo Li, 2024. "Area postrema neurons mediate interleukin-6 function in cancer cachexia," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Xuanming Guo & Pallavi Asthana & Lixiang Zhai & Ka Wing Cheng & Susma Gurung & Jiangang Huang & Jiayan Wu & Yijing Zhang & Arun Kumar Mahato & Mart Saarma & Mart Ustav & Hiu Yee Kwan & Aiping Lyu & Ku, 2024. "Artesunate treats obesity in male mice and non-human primates through GDF15/GFRAL signalling axis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Laurent L’homme & Benan Pelin Sermikli & Joel T. Haas & Sébastien Fleury & Sandrine Quemener & Valentine Guinot & Emelie Barreby & Nathalie Esser & Robert Caiazzo & Hélène Verkindt & Benjamin Legendre, 2024. "Adipose tissue macrophage infiltration and hepatocyte stress increase GDF-15 throughout development of obesity to MASH," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43148-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.