IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02414-2.html
   My bibliography  Save this article

Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation

Author

Listed:
  • Zhaohan Lin

    (Peking University Health Science Center)

  • Jianmei Liu

    (Peking University Health Science Center)

  • Huandi Ding

    (Peking University Health Science Center)

  • Fei Xu

    (Peking University Health Science Center)

  • Heli Liu

    (Peking University Health Science Center)

Abstract

SALM5, a synaptic adhesion molecule implicated in autism, induces presynaptic differentiation through binding to the LAR family receptor protein tyrosine phosphatases (LAR-RPTPs) that have been highlighted as presynaptic hubs for synapse formation. The mechanisms underlying SALM5/LAR-RPTP interaction remain unsolved. Here we report crystal structures of human SALM5 LRR-Ig alone and in complex with human PTPδ Ig1–3 (MeA−). Distinct from other LAR-RPTP ligands, SALM5 mainly exists as a dimer with LRR domains from two protomers packed in an antiparallel fashion. In the 2:2 heterotetrameric SALM5/PTPδ complex, a SALM5 dimer bridges two separate PTPδ molecules. Structure-guided mutations and heterologous synapse formation assays demonstrate that dimerization of SALM5 is prerequisite for its functionality in inducing synaptic differentiation. This study presents a structural template for the SALM family and reveals a mechanism for how a synaptic adhesion molecule directly induces cis-dimerization of LAR-RPTPs into higher-order signaling assembly.

Suggested Citation

  • Zhaohan Lin & Jianmei Liu & Huandi Ding & Fei Xu & Heli Liu, 2018. "Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02414-2
    DOI: 10.1038/s41467-017-02414-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02414-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02414-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christos Gogou & J. Wouter Beugelink & Cátia P. Frias & Leanid Kresik & Natalia Jaroszynska & Uwe Drescher & Bert J. C. Janssen & Robert Hindges & Dimphna H. Meijer, 2024. "Alternative splicing controls teneurin-3 compact dimer formation for neuronal recognition," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02414-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.