IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40526-0.html
   My bibliography  Save this article

Combinatorial expression of neurexins and LAR-type phosphotyrosine phosphatase receptors instructs assembly of a cerebellar circuit

Author

Listed:
  • Alessandra Sclip

    (Stanford University School of Medicine)

  • Thomas C. Südhof

    (Stanford University School of Medicine
    Stanford University School of Medicine)

Abstract

Synaptic adhesion molecules (SAMs) shape the structural and functional properties of synapses and thereby control the information processing power of neural circuits. SAMs are broadly expressed in the brain, suggesting that they may instruct synapse formation and specification via a combinatorial logic. Here, we generate sextuple conditional knockout mice targeting all members of the two major families of presynaptic SAMs, Neurexins and leukocyte common antigen-related-type receptor phospho-tyrosine phosphatases (LAR-PTPRs), which together account for the majority of known trans-synaptic complexes. Using synapses formed by cerebellar Purkinje cells onto deep cerebellar nuclei as a model system, we confirm that Neurexins and LAR-PTPRs themselves are not essential for synapse assembly. The combinatorial deletion of both neurexins and LAR-PTPRs, however, decreases Purkinje-cell synapses on deep cerebellar nuclei, the major output pathway of cerebellar circuits. Consistent with this finding, combined but not separate deletions of neurexins and LAR-PTPRs impair motor behaviors. Thus, Neurexins and LAR-PTPRs are together required for the assembly of a functional cerebellar circuit.

Suggested Citation

  • Alessandra Sclip & Thomas C. Südhof, 2023. "Combinatorial expression of neurexins and LAR-type phosphotyrosine phosphatase receptors instructs assembly of a cerebellar circuit," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40526-0
    DOI: 10.1038/s41467-023-40526-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40526-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40526-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Markus Missler & Weiqi Zhang & Astrid Rohlmann & Gunnar Kattenstroth & Robert E. Hammer & Kurt Gottmann & Thomas C. Südhof, 2003. "α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis," Nature, Nature, vol. 423(6943), pages 939-948, June.
    2. Ai-Hui Tang & Haiwen Chen & Tuo P. Li & Sarah R. Metzbower & Harold D. MacGillavry & Thomas A. Blanpied, 2016. "A trans-synaptic nanocolumn aligns neurotransmitter release to receptors," Nature, Nature, vol. 536(7615), pages 210-214, August.
    3. Tomoyuki Yoshida & Atsushi Yamagata & Ayako Imai & Juhyon Kim & Hironori Izumi & Shogo Nakashima & Tomoko Shiroshima & Asami Maeda & Shiho Iwasawa-Okamoto & Kenji Azechi & Fumina Osaka & Takashi Saito, 2021. "Canonical versus non-canonical transsynaptic signaling of neuroligin 3 tunes development of sociality in mice," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Xuchen Zhang & Pei-Yi Lin & Kif Liakath-Ali & Thomas C. Südhof, 2022. "Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aske L. Ejdrup & Matthew D. Lycas & Niels Lorenzen & Ainoa Konomi & Freja Herborg & Kenneth L. Madsen & Ulrik Gether, 2022. "A density-based enrichment measure for assessing colocalization in single-molecule localization microscopy data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Brian A Lloyd & Ying Han & Rebecca Roth & Bo Zhang & Jason Aoto, 2023. "Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Christos Gogou & J. Wouter Beugelink & Cátia P. Frias & Leanid Kresik & Natalia Jaroszynska & Uwe Drescher & Bert J. C. Janssen & Robert Hindges & Dimphna H. Meijer, 2024. "Alternative splicing controls teneurin-3 compact dimer formation for neuronal recognition," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Martin Hruska & Rachel E. Cain & Matthew B. Dalva, 2022. "Nanoscale rules governing the organization of glutamate receptors in spine synapses are subunit specific," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Ling-Gang Wu & Chung Yu Chan, 2024. "Membrane transformations of fusion and budding," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Wang, Xinyi & Zhang, Xiyun & Zheng, Muhua & Xu, Leijun & Xu, Kesheng, 2023. "Noise-induced coexisting firing patterns in hybrid-synaptic interacting networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    7. Aseel Shomar & Lukas Geyrhofer & Noam E Ziv & Naama Brenner, 2017. "Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-24, July.
    8. Reagan L. Pennock & Luke T. Coddington & Xiaohui Yan & Linda Overstreet-Wadiche & Jacques I. Wadiche, 2023. "Afferent convergence to a shared population of interneuron AMPA receptors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Céline D. Dürst & J. Simon Wiegert & Christian Schulze & Nordine Helassa & Katalin Török & Thomas G. Oertner, 2022. "Vesicular release probability sets the strength of individual Schaffer collateral synapses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Konstantina Liouta & Malgorzata Lubas & Vasika Venugopal & Julia Chabbert & Caroline Jeannière & Candice Diaz & Matthieu Munier & Béatrice Tessier & Stéphane Claverol & Alexandre Favereaux & Matthieu , 2024. "LRRTM2 controls presynapse nano-organization and AMPA receptor sub-positioning through Neurexin-binding interface," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Nicky Scheefhals & Manon Westra & Harold D. MacGillavry, 2023. "mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    12. Justin H. Trotter & Cosmos Yuqi Wang & Peng Zhou & George Nakahara & Thomas C. Südhof, 2023. "A combinatorial code of neurexin-3 alternative splicing controls inhibitory synapses via a trans-synaptic dystroglycan signaling loop," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    13. Xuchen Zhang & Pei-Yi Lin & Kif Liakath-Ali & Thomas C. Südhof, 2022. "Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Philipe R. F. Mendonça & Erica Tagliatti & Helen Langley & Dimitrios Kotzadimitriou & Criseida G. Zamora-Chimal & Yulia Timofeeva & Kirill E. Volynski, 2022. "Asynchronous glutamate release is enhanced in low release efficacy synapses and dispersed across the active zone," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Susanne Prokop & Péter Ábrányi-Balogh & Benjámin Barti & Márton Vámosi & Miklós Zöldi & László Barna & Gabriella M. Urbán & András Dávid Tóth & Barna Dudok & Attila Egyed & Hui Deng & Gian Marco Leggi, 2021. "PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40526-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.