IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46266-z.html
   My bibliography  Save this article

Dynamic control of DNA condensation

Author

Listed:
  • Siddharth Agarwal

    (University of California at Los Angeles
    University of California at Los Angeles)

  • Dino Osmanovic

    (University of California at Los Angeles)

  • Mahdi Dizani

    (University of California at Los Angeles)

  • Melissa A. Klocke

    (University of California at Los Angeles)

  • Elisa Franco

    (University of California at Los Angeles
    University of California at Los Angeles)

Abstract

Artificial biomolecular condensates are emerging as a versatile approach to organize molecular targets and reactions without the need for lipid membranes. Here we ask whether the temporal response of artificial condensates can be controlled via designed chemical reactions. We address this general question by considering a model problem in which a phase separating component participates in reactions that dynamically activate or deactivate its ability to self-attract. Through a theoretical model we illustrate the transient and equilibrium effects of reactions, linking condensate response and reaction parameters. We experimentally realize our model problem using star-shaped DNA motifs known as nanostars to generate condensates, and we take advantage of strand invasion and displacement reactions to kinetically control the capacity of nanostars to interact. We demonstrate reversible dissolution and growth of DNA condensates in the presence of specific DNA inputs, and we characterize the role of toehold domains, nanostar size, and nanostar valency. Our results will support the development of artificial biomolecular condensates that can adapt to environmental changes with prescribed temporal dynamics.

Suggested Citation

  • Siddharth Agarwal & Dino Osmanovic & Mahdi Dizani & Melissa A. Klocke & Elisa Franco, 2024. "Dynamic control of DNA condensation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46266-z
    DOI: 10.1038/s41467-024-46266-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46266-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46266-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua Fern & Rebecca Schulman, 2018. "Modular DNA strand-displacement controllers for directing material expansion," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Siddharth Agarwal & Melissa A. Klocke & Passa E. Pungchai & Elisa Franco, 2021. "Dynamic self-assembly of compartmentalized DNA nanotubes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Samuel W. Schaffter & Dominic Scalise & Terence M. Murphy & Anusha Patel & Rebecca Schulman, 2020. "Feedback regulation of crystal growth by buffering monomer concentration," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Philip Petersen & Grigory Tikhomirov & Lulu Qian, 2018. "Information-based autonomous reconfiguration in systems of interacting DNA nanostructures," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. Ankur Jain & Ronald D. Vale, 2017. "RNA phase transitions in repeat expansion disorders," Nature, Nature, vol. 546(7657), pages 243-247, June.
    6. Liang Yue & Shan Wang & Verena Wulf & Itamar Willner, 2019. "Stiffness-switchable DNA-based constitutional dynamic network hydrogels for self-healing and matrix-guided controlled chemical processes," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    7. Paul W K Rothemund & Nick Papadakis & Erik Winfree, 2004. "Algorithmic Self-Assembly of DNA Sierpinski Triangles," PLOS Biology, Public Library of Science, vol. 2(12), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah Rösing & Fabian Ullrich & Susann Meisterfeld & Franziska Schmidt & Laura Mlitzko & Marijana Croon & Ryan G Nattrass & Nadia Eberl & Julia Mahlberg & Martin Schlee & Anja Wieland & Philipp Simon , 2024. "Chronic endoplasmic reticulum stress in myotonic dystrophy type 2 promotes autoimmunity via mitochondrial DNA release," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Federica Raguseo & Yiran Wang & Jessica Li & Marija Petrić Howe & Rubika Balendra & Anouk Huyghebaert & Devkee M. Vadukul & Diana A. Tanase & Thomas E. Maher & Layla Malouf & Roger Rubio-Sánchez & Fra, 2023. "The ALS/FTD-related C9orf72 hexanucleotide repeat expansion forms RNA condensates through multimolecular G-quadruplexes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Zhefan Stephen Chen & Mingxi Ou & Stephanie Taylor & Ruxandra Dafinca & Shaohong Isaac Peng & Kevin Talbot & Ho Yin Edwin Chan, 2023. "Mutant GGGGCC RNA prevents YY1 from binding to Fuzzy promoter which stimulates Wnt/β-catenin pathway in C9ALS/FTD," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Hong Kang & Yuexuan Yang & Bryan Wei, 2024. "Synthetic molecular switches driven by DNA-modifying enzymes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Ofer Kimchi & Ella M. King & Michael P. Brenner, 2023. "Uncovering the mechanism for aggregation in repeat expanded RNA reveals a reentrant transition," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Sudarsan Mugunthan & Lan Li Wong & Fernaldo Richtia Winnerdy & Stephen Summers & Muhammad Hafiz Ismail & Yong Hwee Foo & Tavleen Kaur Jaggi & Oliver W. Meldrum & Pei Yee Tiew & Sanjay H. Chotirmall & , 2023. "RNA is a key component of extracellular DNA networks in Pseudomonas aeruginosa biofilms," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Momčilo Gavrilov & Joshua Y. C. Yang & Roger S. Zou & Wen Ma & Chun-Ying Lee & Sonisilpa Mohapatra & Jimin Kang & Ting-Wei Liao & Sua Myong & Taekjip Ha, 2022. "Engineered helicase replaces thermocycler in DNA amplification while retaining desired PCR characteristics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Zhantao Shao & Jack Hu & Allison Jandura & Ronit Wilk & Matthew Jachimowicz & Lingfeng Ma & Chun Hu & Abby Sundquist & Indrani Das & Phillip Samuel-Larbi & Julie A. Brill & Henry M. Krause, 2024. "Spatially revealed roles for lncRNAs in Drosophila spermatogenesis, Y chromosome function and evolution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Jaimie Marie Stewart & Shiyi Li & Anli A. Tang & Melissa Ann Klocke & Martin Vincent Gobry & Giacomo Fabrini & Lorenzo Michele & Paul W. K. Rothemund & Elisa Franco, 2024. "Modular RNA motifs for orthogonal phase separated compartments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Brett M. O’Brien & Roumita Moulick & Gabriel Jiménez-Avalos & Nandakumar Rajasekaran & Christian M. Kaiser & Sarah A. Woodson, 2024. "Stick-slip unfolding favors self-association of expanded HTT mRNA," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Damian Wollny & Benjamin Vernot & Jie Wang & Maria Hondele & Aram Safrastyan & Franziska Aron & Julia Micheel & Zhisong He & Anthony Hyman & Karsten Weis & J. Gray Camp & T.‐Y. Dora Tang & Barbara Tre, 2022. "Characterization of RNA content in individual phase-separated coacervate microdroplets," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Clara Lopes Novo & Emily V. Wong & Colin Hockings & Chetan Poudel & Eleanor Sheekey & Meike Wiese & Hanneke Okkenhaug & Simon J. Boulton & Srinjan Basu & Simon Walker & Gabriele S. Kaminski Schierle &, 2022. "Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Riccardo Calandrelli & Xingzhao Wen & John Lalith Charles Richard & Zhifei Luo & Tri C. Nguyen & Chien-Ju Chen & Zhijie Qi & Shuanghong Xue & Weizhong Chen & Zhangming Yan & Weixin Wu & Kathia Zaleta-, 2023. "Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Aleck Johnsen & Ming-Yang Kao & Shinnosuke Seki, 2017. "A manually-checkable proof for the NP-hardness of 11-color pattern self-assembly tileset synthesis," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 496-529, February.
    16. Yahong Chen & Chaoyong Yang & Zhi Zhu & Wei Sun, 2022. "Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Jianbang Wang & Zhenzhen Li & Itamar Willner, 2022. "Cascaded dissipative DNAzyme-driven layered networks guide transient replication of coded-strands as gene models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46266-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.