IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7423297.html
   My bibliography  Save this article

Complex Reaction Kinetics in Chemistry: A Unified Picture Suggested by Mechanics in Physics

Author

Listed:
  • Elena Agliari
  • Adriano Barra
  • Giulio Landolfi
  • Sara Murciano
  • Sarah Perrone

Abstract

Complex biochemical pathways can be reduced to chains of elementary reactions, which can be described in terms of chemical kinetics. Among the elementary reactions so far extensively investigated, we recall the Michaelis-Menten and the Hill positive-cooperative kinetics, which apply to molecular binding and are characterized by the absence and the presence, respectively, of cooperative interactions between binding sites. However, there is evidence of reactions displaying a more complex pattern: these follow the positive-cooperative scenario at small substrate concentration, yet negative-cooperative effects emerge as the substrate concentration is increased. Here, we analyze the formal analogy between the mathematical backbone of (classical) reaction kinetics in Chemistry and that of (classical) mechanics in Physics. We first show that standard cooperative kinetics can be framed in terms of classical mechanics, where the emerging phenomenology can be obtained by applying the principle of least action of classical mechanics. Further, since the saturation function plays in Chemistry the same role played by velocity in Physics, we show that a relativistic scaffold naturally accounts for the kinetics of the above-mentioned complex reactions. The proposed formalism yields to a unique, consistent picture for cooperative-like reactions and to a stronger mathematical control.

Suggested Citation

  • Elena Agliari & Adriano Barra & Giulio Landolfi & Sara Murciano & Sarah Perrone, 2018. "Complex Reaction Kinetics in Chemistry: A Unified Picture Suggested by Mechanics in Physics," Complexity, Hindawi, vol. 2018, pages 1-16, January.
  • Handle: RePEc:hin:complx:7423297
    DOI: 10.1155/2018/7423297
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/7423297.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/7423297.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/7423297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyle Lund & Anthony J. Manzo & Nadine Dabby & Nicole Michelotti & Alexander Johnson-Buck & Jeanette Nangreave & Steven Taylor & Renjun Pei & Milan N. Stojanovic & Nils G. Walter & Erik Winfree & Hao Y, 2010. "Molecular robots guided by prescriptive landscapes," Nature, Nature, vol. 465(7295), pages 206-210, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Chapin S. Korosec & Ivan N. Unksov & Pradheebha Surendiran & Roman Lyttleton & Paul M. G. Curmi & Christopher N. Angstmann & Ralf Eichhorn & Heiner Linke & Nancy R. Forde, 2024. "Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Hong Kang & Yuexuan Yang & Bryan Wei, 2024. "Synthetic molecular switches driven by DNA-modifying enzymes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Alexandru Amărioarei & Frankie Spencer & Gefry Barad & Ana-Maria Gheorghe & Corina Iţcuş & Iris Tuşa & Ana-Maria Prelipcean & Andrei Păun & Mihaela Păun & Alfonso Rodriguez-Paton & Romică Trandafir & , 2021. "DNA-Guided Assembly for Fibril Proteins," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    5. Sungwook Woo & Sinem K. Saka & Feng Xuan & Peng Yin, 2024. "Molecular robotic agents that survey molecular landscapes for information retrieval," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7423297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.