IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47523-x.html
   My bibliography  Save this article

Consistent signatures in the human gut microbiome of old- and young-onset colorectal cancer

Author

Listed:
  • Youwen Qin

    (BGI Research
    BGI Genomics)

  • Xin Tong

    (BGI Research)

  • Wei-Jian Mei

    (Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer)

  • Yanshuang Cheng

    (Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer)

  • Yuanqiang Zou

    (BGI Research
    Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome)

  • Kai Han

    (Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer)

  • Jiehai Yu

    (Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer)

  • Zhuye Jie

    (BGI Research)

  • Tao Zhang

    (BGI Research
    Shenzhen Key Laboratory of Human commensal microorganisms and Health Research
    BGI Research)

  • Shida Zhu

    (BGI Genomics)

  • Xin Jin

    (BGI Research)

  • Jian Wang

    (BGI Research)

  • Huanming Yang

    (BGI Research)

  • Xun Xu

    (BGI Research)

  • Huanzi Zhong

    (BGI Research
    BGI Genomics)

  • Liang Xiao

    (BGI Research
    Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome)

  • Pei-Rong Ding

    (Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Provincial Clinical Research Center for Cancer)

Abstract

The incidence of young-onset colorectal cancer (yCRC) has been increasing in recent decades, but little is known about the gut microbiome of these patients. Most studies have focused on old-onset CRC (oCRC), and it remains unclear whether CRC signatures derived from old patients are valid in young patients. To address this, we assembled the largest yCRC gut metagenomes to date from two independent cohorts and found that the CRC microbiome had limited association with age across adulthood. Differential analysis revealed that well-known CRC-associated taxa, such as Clostridium symbiosum, Peptostreptococcus stomatis, Parvimonas micra and Hungatella hathewayi were significantly enriched (false discovery rate

Suggested Citation

  • Youwen Qin & Xin Tong & Wei-Jian Mei & Yanshuang Cheng & Yuanqiang Zou & Kai Han & Jiehai Yu & Zhuye Jie & Tao Zhang & Shida Zhu & Xin Jin & Jian Wang & Huanming Yang & Xun Xu & Huanzi Zhong & Liang X, 2024. "Consistent signatures in the human gut microbiome of old- and young-onset colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47523-x
    DOI: 10.1038/s41467-024-47523-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47523-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47523-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Himel Mallick & Ali Rahnavard & Lauren J McIver & Siyuan Ma & Yancong Zhang & Long H Nguyen & Timothy L Tickle & George Weingart & Boyu Ren & Emma H Schwager & Suvo Chatterjee & Kelsey N Thompson & Je, 2021. "Multivariable association discovery in population-scale meta-omics studies," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-27, November.
    2. Qiang Feng & Suisha Liang & Huijue Jia & Andreas Stadlmayr & Longqing Tang & Zhou Lan & Dongya Zhang & Huihua Xia & Xiaoying Xu & Zhuye Jie & Lili Su & Xiaoping Li & Xin Li & Junhua Li & Liang Xiao & , 2015. "Gut microbiome development along the colorectal adenoma–carcinoma sequence," Nature Communications, Nature, vol. 6(1), pages 1-13, May.
    3. Yongzhi Yang & Lutao Du & Debing Shi & Cheng Kong & Jianqiang Liu & Guang Liu & Xinxiang Li & Yanlei Ma, 2021. "Dysbiosis of human gut microbiome in young-onset colorectal cancer," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Edoardo Pasolli & Duy Tin Truong & Faizan Malik & Levi Waldron & Nicola Segata, 2016. "Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-26, July.
    5. Yuko Sato & Koji Atarashi & Damian R. Plichta & Yasumichi Arai & Satoshi Sasajima & Sean M. Kearney & Wataru Suda & Kozue Takeshita & Takahiro Sasaki & Shoki Okamoto & Ashwin N. Skelly & Yuki Okamura , 2021. "Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians," Nature, Nature, vol. 599(7885), pages 458-464, November.
    6. Martha Zepeda-Rivera & Samuel S. Minot & Heather Bouzek & Hanrui Wu & Aitor Blanco-Míguez & Paolo Manghi & Dakota S. Jones & Kaitlyn D. LaCourse & Ying Wu & Elsa F. McMahon & Soon-Nang Park & Yun K. L, 2024. "A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche," Nature, Nature, vol. 628(8007), pages 424-432, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Su & Qin Liu & Raphaela Iris Lau & Jingwan Zhang & Zhilu Xu & Yun Kit Yeoh & Thomas W. H. Leung & Whitney Tang & Lin Zhang & Jessie Q. Y. Liang & Yuk Kam Yau & Jiaying Zheng & Chengyu Liu & Mengjin, 2022. "Faecal microbiome-based machine learning for multi-class disease diagnosis," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Efrat Muller & Itamar Shiryan & Elhanan Borenstein, 2024. "Multi-omic integration of microbiome data for identifying disease-associated modules," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Ruairi C. Robertson & Thaddeus J. Edens & Lynnea Carr & Kuda Mutasa & Ethan K. Gough & Ceri Evans & Hyun Min Geum & Iman Baharmand & Sandeep K. Gill & Robert Ntozini & Laura E. Smith & Bernard Chasekw, 2023. "The gut microbiome and early-life growth in a population with high prevalence of stunting," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Jaron Thompson & Renee Johansen & John Dunbar & Brian Munsky, 2019. "Machine learning to predict microbial community functions: An analysis of dissolved organic carbon from litter decomposition," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-16, July.
    5. Hung-Chih Chen & Yen-Wen Liu & Kuan-Cheng Chang & Yen-Wen Wu & Yi-Ming Chen & Yu-Kai Chao & Min-Yi You & David J. Lundy & Chen-Ju Lin & Marvin L. Hsieh & Yu-Che Cheng & Ray P. Prajnamitra & Po-Ju Lin , 2023. "Gut butyrate-producers confer post-infarction cardiac protection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Manish Boolchandani & Kevin S. Blake & Drake H. Tilley & Miguel M. Cabada & Drew J. Schwartz & Sanket Patel & Maria Luisa Morales & Rina Meza & Giselle Soto & Sandra D. Isidean & Chad K. Porter & Mark, 2022. "Impact of international travel and diarrhea on gut microbiome and resistome dynamics," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Zhirui Cao & Dejun Fan & Yang Sun & Ziyu Huang & Yue Li & Runping Su & Feng Zhang & Qing Li & Hongju Yang & Fen Zhang & Yinglei Miao & Ping Lan & Xiaojian Wu & Tao Zuo, 2024. "The gut ileal mucosal virome is disturbed in patients with Crohn’s disease and exacerbates intestinal inflammation in mice," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    8. Jean-Sebastien Gounot & Minghao Chia & Denis Bertrand & Woei-Yuh Saw & Aarthi Ravikrishnan & Adrian Low & Yichen Ding & Amanda Hui Qi Ng & Linda Wei Lin Tan & Yik-Ying Teo & Henning Seedorf & Niranjan, 2022. "Genome-centric analysis of short and long read metagenomes reveals uncharacterized microbiome diversity in Southeast Asians," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Tzipi Braun & Rui Feng & Amnon Amir & Nina Levhar & Hila Shacham & Ren Mao & Rotem Hadar & Itamar Toren & Yadid Algavi & Kathleen Abu-Saad & Shuoyu Zhuo & Gilat Efroni & Alona Malik & Orit Picard & Mi, 2024. "Diet-omics in the Study of Urban and Rural Crohn disease Evolution (SOURCE) cohort," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Bo Tang & Li Tang & Shengpeng Li & Shuang Liu & Jialin He & Pan Li & Sumin Wang & Min Yang & Longhui Zhang & Yuanyuan Lei & Dianji Tu & Xuefeng Tang & Hua Hu & Qin Ouyang & Xia Chen & Shiming Yang, 2023. "Gut microbiota alters host bile acid metabolism to contribute to intrahepatic cholestasis of pregnancy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Lingling Wang & Haobin Yao & Daniel C. Morgan & Kam Shing Lau & Suet Yi Leung & Joshua W. K. Ho & Wai K. Leung, 2023. "Altered human gut virome in patients undergoing antibiotics therapy for Helicobacter pylori," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Karen D. Corbin & Elvis A. Carnero & Blake Dirks & Daria Igudesman & Fanchao Yi & Andrew Marcus & Taylor L. Davis & Richard E. Pratley & Bruce E. Rittmann & Rosa Krajmalnik-Brown & Steven R. Smith, 2023. "Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Qi Zhao & Man-Yun Dai & Ruo-Yue Huang & Jing-Yi Duan & Ting Zhang & Wei-Min Bao & Jing-Yi Zhang & Shao-Qiang Gui & Shu-Min Xia & Cong-Ting Dai & Ying-Mei Tang & Frank J. Gonzalez & Fei Li, 2023. "Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Carolina Alves Costa Silva & Gianmarco Piccinno & Déborah Suissa & Mélanie Bourgin & Gerty Schreibelt & Sylvère Durand & Roxanne Birebent & Marine Fidelle & Cissé Sow & Fanny Aprahamian & Paolo Manghi, 2024. "Influence of microbiota-associated metabolic reprogramming on clinical outcome in patients with melanoma from the randomized adjuvant dendritic cell-based MIND-DC trial," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Paula Istvan & Einar Birkeland & Ekaterina Avershina & Ane S. Kværner & Vahid Bemanian & Barbara Pardini & Sonia Tarallo & Willem M. Vos & Torbjørn Rognes & Paula Berstad & Trine B. Rounge, 2024. "Exploring the gut DNA virome in fecal immunochemical test stool samples reveals associations with lifestyle in a large population-based study," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Romina Bonomini-Gnutzmann & Julio Plaza-Díaz & Carlos Jorquera-Aguilera & Andrés Rodríguez-Rodríguez & Fernando Rodríguez-Rodríguez, 2022. "Effect of Intensity and Duration of Exercise on Gut Microbiota in Humans: A Systematic Review," IJERPH, MDPI, vol. 19(15), pages 1-17, August.
    17. Daniel Chang & Vinod K. Gupta & Benjamin Hur & Sergio Cobo-López & Kevin Y. Cunningham & Nam Soo Han & Insuk Lee & Vanessa L. Kronzer & Levi M. Teigen & Lioudmila V. Karnatovskaia & Erin E. Longbrake , 2024. "Gut Microbiome Wellness Index 2 enhances health status prediction from gut microbiome taxonomic profiles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Tomás Clive Barker-Tejeda & Elisa Zubeldia-Varela & Andrea Macías-Camero & Lola Alonso & Isabel Adoración Martín-Antoniano & María Fernanda Rey-Stolle & Leticia Mera-Berriatua & Raphaëlle Bazire & Pau, 2024. "Comparative characterization of the infant gut microbiome and their maternal lineage by a multi-omics approach," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    19. Andrew Baldi & Sabine Braat & Mohammed Imrul Hasan & Cavan Bennett & Marilou Barrios & Naomi Jones & Gemma Moir-Meyer & Imadh Abdul Azeez & Stephen Wilcox & Mohammad Saiful Alam Bhuiyan & Ricardo Atai, 2024. "Community use of oral antibiotics transiently reprofiles the intestinal microbiome in young Bangladeshi children," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. M. Büttner & J. Ostner & C. L. Müller & F. J. Theis & B. Schubert, 2021. "scCODA is a Bayesian model for compositional single-cell data analysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47523-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.