IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47147-1.html
   My bibliography  Save this article

Low thermal contact resistance boron nitride nanosheets composites enabled by interfacial arc-like phonon bridge

Author

Listed:
  • Ke Zhan

    (Tsinghua University)

  • Yucong Chen

    (Tsinghua University)

  • Zhiyuan Xiong

    (South China University of Technology)

  • Yulun Zhang

    (Tsinghua University)

  • Siyuan Ding

    (Tsinghua University)

  • Fangzheng Zhen

    (Monash University)

  • Zhenshi Liu

    (Ltd.)

  • Qiang Wei

    (Ltd.)

  • Minsu Liu

    (Tsinghua University
    Monash University
    Foshan (Southern China) Institute for New Materials)

  • Bo Sun

    (Tsinghua University
    Shenzhen)

  • Hui-Ming Cheng

    (Chinese Academy of Sciences
    Shenzhen University of Advanced Technology
    Chinese Academy of Sciences)

  • Ling Qiu

    (Tsinghua University
    Shenzhen)

Abstract

Two-dimensional materials with ultrahigh in-plane thermal conductivity are ideal for heat spreader applications but cause significant thermal contact resistance in complex interfaces, limiting their use as thermal interface materials. In this study, we present an interfacial phonon bridge strategy to reduce the thermal contact resistance of boron nitride nanosheets-based composites. By using a low-molecular-weight polymer, we are able to manipulate the alignment of boron nitride nanosheets through sequential stacking and cutting, ultimately achieving flexible thin films with a layer of arc-like structure superimposed on perpendicularly aligned ones. Our results suggest that arc-like structure can act as a phonon bridge to lower the contact resistance by 70% through reducing phonon back-reflection and enhancing phonon coupling efficiency at the boundary. The resulting composites exhibit ultralow thermal contact resistance of 0.059 in2 KW−1, demonstrating effective cooling of fast-charging batteries at a thickness 2-5 times thinner than commercial products.

Suggested Citation

  • Ke Zhan & Yucong Chen & Zhiyuan Xiong & Yulun Zhang & Siyuan Ding & Fangzheng Zhen & Zhenshi Liu & Qiang Wei & Minsu Liu & Bo Sun & Hui-Ming Cheng & Ling Qiu, 2024. "Low thermal contact resistance boron nitride nanosheets composites enabled by interfacial arc-like phonon bridge," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47147-1
    DOI: 10.1038/s41467-024-47147-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47147-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47147-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haoxue Han & Yong Zhang & Nan Wang & Majid Kabiri Samani & Yuxiang Ni & Zainelabideen Y. Mijbil & Michael Edwards & Shiyun Xiong & Kimmo Sääskilahti & Murali Murugesan & Yifeng Fu & Lilei Ye & Hatef S, 2016. "Functionalization mediates heat transport in graphene nanoflakes," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    2. Peng Li & Mincheng Yang & Yingjun Liu & Huasong Qin & Jingran Liu & Zhen Xu & Yilun Liu & Fanxu Meng & Jiahao Lin & Fang Wang & Chao Gao, 2020. "Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Yayuan Liu & Yangying Zhu & Yi Cui, 2019. "Challenges and opportunities towards fast-charging battery materials," Nature Energy, Nature, vol. 4(7), pages 540-550, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Peng Li & Ziqiu Wang & Yuxiang Qi & Gangfeng Cai & Yingjie Zhao & Xin Ming & Zizhen Lin & Weigang Ma & Jiahao Lin & Hang Li & Kai Shen & Yingjun Liu & Zhen Xu & Zhiping Xu & Chao Gao, 2024. "Bidirectionally promoting assembly order for ultrastiff and highly thermally conductive graphene fibres," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Xuekun Lu & Marco Lagnoni & Antonio Bertei & Supratim Das & Rhodri E. Owen & Qi Li & Kieran O’Regan & Aaron Wade & Donal P. Finegan & Emma Kendrick & Martin Z. Bazant & Dan J. L. Brett & Paul R. Shear, 2023. "Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Pepe, Simona & Ciucci, Francesco, 2023. "Long-range battery state-of-health and end-of-life prediction with neural networks and feature engineering," Applied Energy, Elsevier, vol. 350(C).
    6. Wassiliadis, Nikolaos & Ank, Manuel & Wildfeuer, Leo & Kick, Michael K. & Lienkamp, Markus, 2021. "Experimental investigation of the influence of electrical contact resistance on lithium-ion battery testing for fast-charge applications," Applied Energy, Elsevier, vol. 295(C).
    7. Andreas Nylander & Josef Hansson & Majid Kabiri Samani & Christian Chandra Darmawan & Ana Borta Boyon & Laurent Divay & Lilei Ye & Yifeng Fu & Afshin Ziaei & Johan Liu, 2019. "Reliability Investigation of a Carbon Nanotube Array Thermal Interface Material," Energies, MDPI, vol. 12(11), pages 1-10, May.
    8. Minsung Baek & Jinyoung Kim & Jaegyu Jin & Jang Wook Choi, 2021. "Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Lin, Zizhen & Ping, Xiaofan & Zhao, Dongming & Cai, Zihe & Wang, Xingtao & Zhang, Chi & Wang, Lichuang & Li, Menglei & Chen, Xiongfei & Niu, Jingkai & Xue, Yao & Liu, Yun & Li, Xinlian & Qin, Xiaojun , 2024. "A biomimetic non-woven fabric with passive thermal-insulation and active heat-recovering," Applied Energy, Elsevier, vol. 353(PA).
    10. Yongyi Huang & Atsushi Yona & Hiroshi Takahashi & Ashraf Mohamed Hemeida & Paras Mandal & Alexey Mikhaylov & Tomonobu Senjyu & Mohammed Elsayed Lotfy, 2021. "Energy Management System Optimization of Drug Store Electric Vehicles Charging Station Operation," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
    11. Yecun Wu & Jingyang Wang & Yanbin Li & Jiawei Zhou & Bai Yang Wang & Ankun Yang & Lin-Wang Wang & Harold Y. Hwang & Yi Cui, 2022. "Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Luke Farrier & Richard Bucknall, 2020. "Investigating the Performance Capability of a Lithium-ion Battery System When Powering Future Pulsed Loads," Energies, MDPI, vol. 13(6), pages 1-15, March.
    13. Xiong, Ruoyu & Zhang, Tengfang & Huang, Tianlun & Li, Maoyuan & Zhang, Yun & Zhou, Huamin, 2020. "Improvement of electrochemical homogeneity for lithium-ion batteries enabled by a conjoined-electrode structure," Applied Energy, Elsevier, vol. 270(C).
    14. Wenxiao Huang & Yusheng Ye & Hao Chen & Rafael A. Vilá & Andrew Xiang & Hongxia Wang & Fang Liu & Zhiao Yu & Jinwei Xu & Zewen Zhang & Rong Xu & Yecun Wu & Lien-Yang Chou & Hansen Wang & Junwei Xu & D, 2022. "Onboard early detection and mitigation of lithium plating in fast-charging batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Ashleigh Townsend & Rupert Gouws, 2022. "A Comparative Review of Lead-Acid, Lithium-Ion and Ultra-Capacitor Technologies and Their Degradation Mechanisms," Energies, MDPI, vol. 15(13), pages 1-29, July.
    16. Weihao Zeng & Fanjie Xia & Juan Wang & Jinlong Yang & Haoyang Peng & Wei Shu & Quan Li & Hong Wang & Guan Wang & Shichun Mu & Jinsong Wu, 2024. "Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Hong Zhao & Li Wang & Zonghai Chen & Xiangming He, 2019. "Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous as Anode Material: Review," Energies, MDPI, vol. 12(20), pages 1-23, October.
    18. Zhu, Zongyuan & Xu, Zhen, 2020. "The rational design of biomass-derived carbon materials towards next-generation energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Hiram Kwak & Jae-Seung Kim & Daseul Han & Jong Seok Kim & Juhyoun Park & Gihan Kwon & Seong-Min Bak & Unseon Heo & Changhyun Park & Hyun-Wook Lee & Kyung-Wan Nam & Dong-Hwa Seo & Yoon Seok Jung, 2023. "Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47147-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.