IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51168-1.html
   My bibliography  Save this article

Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries

Author

Listed:
  • Weihao Zeng

    (Wuhan University of Technology)

  • Fanjie Xia

    (Wuhan University of Technology)

  • Juan Wang

    (Wuhan University of Technology)

  • Jinlong Yang

    (Shenzhen University)

  • Haoyang Peng

    (Wuhan University of Technology)

  • Wei Shu

    (Wuhan University of Technology)

  • Quan Li

    (Wuhan University of Technology)

  • Hong Wang

    (Wuhan University of Technology)

  • Guan Wang

    (Wuhan University of Technology)

  • Shichun Mu

    (Wuhan University of Technology)

  • Jinsong Wu

    (Wuhan University of Technology)

Abstract

Fast-charging, non-aqueous lithium-based batteries are desired for practical applications. In this regard, LiMn2O4 is considered an appealing positive electrode active material because of its favourable ionic diffusivity due to the presence of three-dimensional Li-ion diffusion channels. However, LiMn2O4 exhibits inadequate rate capabilities and rapid structural degradation at high currents. To circumvent these issues, here we introduce quintuple low-valence cations to increase the entropy of LiMn2O4. As a result, the entropy-increased LiMn2O4-based material, i.e., LiMn1.9Cu0.02Mg0.02Fe0.02Zn0.02Ni0.02O4, when tested in non-aqueous lithium metal coin cell configuration, enable 1000 cell cycles at 1.48 A g−1 (corresponding to a cell charging time of 4 minutes) and 25°C with a discharge capacity retention of about 80%. We demonstrate that the increased entropy in LiMn2O4 leads to an increase in the disordering of dopant cations and a contracted local structure, where the enlarged LiO4 space and enhanced Mn-O covalency improve the Li-ion transport and stabilize the diffusion channels. We also prove that stress caused by cycling at a high cell state of charge is relieved through elastic deformation via a solid-solution transition, thus avoiding structural degradation upon prolonged cycling.

Suggested Citation

  • Weihao Zeng & Fanjie Xia & Juan Wang & Jinlong Yang & Haoyang Peng & Wei Shu & Quan Li & Hong Wang & Guan Wang & Shichun Mu & Jinsong Wu, 2024. "Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51168-1
    DOI: 10.1038/s41467-024-51168-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51168-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51168-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tongchao Liu & Alvin Dai & Jun Lu & Yifei Yuan & Yinguo Xiao & Lei Yu & Matthew Li & Jihyeon Gim & Lu Ma & Jiajie Liu & Chun Zhan & Luxi Li & Jiaxin Zheng & Yang Ren & Tianpin Wu & Reza Shahbazian-Yas, 2019. "Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Rui Wang & Xin Chen & Zhongyuan Huang & Jinlong Yang & Fusheng Liu & Mihai Chu & Tongchao Liu & Chaoqi Wang & Weiming Zhu & Shuankui Li & Shunning Li & Jiaxin Zheng & Jie Chen & Lunhua He & Lei Jin & , 2021. "Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Zhen-Feng Huang & Shibo Xi & Jiajia Song & Shuo Dou & Xiaogang Li & Yonghua Du & Caozheng Diao & Zhichuan J. Xu & Xin Wang, 2021. "Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Haodong Liu & Zhuoying Zhu & Qizhang Yan & Sicen Yu & Xin He & Yan Chen & Rui Zhang & Lu Ma & Tongchao Liu & Matthew Li & Ruoqian Lin & Yiming Chen & Yejing Li & Xing Xing & Yoonjung Choi & Lucy Gao &, 2020. "A disordered rock salt anode for fast-charging lithium-ion batteries," Nature, Nature, vol. 585(7823), pages 63-67, September.
    5. Rui Zhang & Chunyang Wang & Peichao Zou & Ruoqian Lin & Lu Ma & Liang Yin & Tianyi Li & Wenqian Xu & Hao Jia & Qiuyan Li & Sami Sainio & Kim Kisslinger & Stephen E. Trask & Steven N. Ehrlich & Yang Ya, 2022. "Compositionally complex doping for zero-strain zero-cobalt layered cathodes," Nature, Nature, vol. 610(7930), pages 67-73, October.
    6. Yayuan Liu & Yangying Zhu & Yi Cui, 2019. "Challenges and opportunities towards fast-charging battery materials," Nature Energy, Nature, vol. 4(7), pages 540-550, July.
    7. Michael M. Thackeray & Khalil Amine, 2021. "LiMn2O4 spinel and substituted cathodes," Nature Energy, Nature, vol. 6(5), pages 566-566, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Tiezhu Xu & Zhenming Xu & Tengyu Yao & Miaoran Zhang & Duo Chen & Xiaogang Zhang & Laifa Shen, 2023. "Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Bandara, T.G. Thusitha Asela & Viera, J.C. & González, M., 2022. "The next generation of fast charging methods for Lithium-ion batteries: The natural current-absorption methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Xuekun Lu & Marco Lagnoni & Antonio Bertei & Supratim Das & Rhodri E. Owen & Qi Li & Kieran O’Regan & Aaron Wade & Donal P. Finegan & Emma Kendrick & Martin Z. Bazant & Dan J. L. Brett & Paul R. Shear, 2023. "Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Yantao Wang & Hongtao Qu & Bowen Liu & Xiaoju Li & Jiangwei Ju & Jiedong Li & Shu Zhang & Jun Ma & Chao Li & Zhiwei Hu & Chung-Kai Chang & Hwo-Shuenn Sheu & Longfei Cui & Feng Jiang & Ernst R. H. Eck , 2023. "Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Ziyao Gao & Chenglong Zhao & Kai Zhou & Junru Wu & Yao Tian & Xianming Deng & Lihan Zhang & Kui Lin & Feiyu Kang & Lele Peng & Marnix Wagemaker & Baohua Li, 2024. "Kirkendall effect-induced uniform stress distribution stabilizes nickel-rich layered oxide cathodes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Fang Fu & Xiang Liu & Xiaoguang Fu & Hongwei Chen & Ling Huang & Jingjing Fan & Jiabo Le & Qiuxiang Wang & Weihua Yang & Yang Ren & Khalil Amine & Shi-Gang Sun & Gui-Liang Xu, 2022. "Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Pepe, Simona & Ciucci, Francesco, 2023. "Long-range battery state-of-health and end-of-life prediction with neural networks and feature engineering," Applied Energy, Elsevier, vol. 350(C).
    12. Wassiliadis, Nikolaos & Ank, Manuel & Wildfeuer, Leo & Kick, Michael K. & Lienkamp, Markus, 2021. "Experimental investigation of the influence of electrical contact resistance on lithium-ion battery testing for fast-charge applications," Applied Energy, Elsevier, vol. 295(C).
    13. Minsung Baek & Jinyoung Kim & Jaegyu Jin & Jang Wook Choi, 2021. "Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Zuyun He & Jun Zhang & Zhiheng Gong & Hang Lei & Deng Zhou & Nian Zhang & Wenjie Mai & Shijun Zhao & Yan Chen, 2022. "Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Gang Sun & Fu-Da Yu & Mi Lu & Qingjun Zhu & Yunshan Jiang & Yongzhi Mao & John A. McLeod & Jason Maley & Jian Wang & Jigang Zhou & Zhenbo Wang, 2022. "Surface chemical heterogeneous distribution in over-lithiated Li1+xCoO2 electrodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Yongyi Huang & Atsushi Yona & Hiroshi Takahashi & Ashraf Mohamed Hemeida & Paras Mandal & Alexey Mikhaylov & Tomonobu Senjyu & Mohammed Elsayed Lotfy, 2021. "Energy Management System Optimization of Drug Store Electric Vehicles Charging Station Operation," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
    17. Jiangfeng Huang & Liang Xue & Yin Huang & Yanchen Jiang & Ping Wu & Xiulin Fan & Junwu Zhu, 2024. "Thermodynamically spontaneously intercalated H3O+ enables LiMn2O4 with enhanced proton tolerance in aqueous batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Shiyi Chen & Shishi Zhang & Lei Guo & Lun Pan & Chengxiang Shi & Xiangwen Zhang & Zhen-Feng Huang & Guidong Yang & Ji-Jun Zou, 2023. "Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Zhengwei Cai & Jie Liang & Zixiao Li & Tingyu Yan & Chaoxin Yang & Shengjun Sun & Meng Yue & Xuwei Liu & Ting Xie & Yan Wang & Tingshuai Li & Yongsong Luo & Dongdong Zheng & Qian Liu & Jingxiang Zhao , 2024. "Stabilizing NiFe sites by high-dispersity of nanosized and anionic Cr species toward durable seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Yecun Wu & Jingyang Wang & Yanbin Li & Jiawei Zhou & Bai Yang Wang & Ankun Yang & Lin-Wang Wang & Harold Y. Hwang & Yi Cui, 2022. "Observation of an intermediate state during lithium intercalation of twisted bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51168-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.