IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v134y2020ics1364032120305967.html
   My bibliography  Save this article

The rational design of biomass-derived carbon materials towards next-generation energy storage: A review

Author

Listed:
  • Zhu, Zongyuan
  • Xu, Zhen

Abstract

The efficient storage of electricity generated from clean energy can help liberate human beings from the shackles of fossil fuel shortage. As the existing energy storage systems are becoming close to their theoretical energy limitation, the development of next-generation energy storage is of great necessity. Carbon materials are one of the most versatile materials that play a key role in different energy storage devices because their outstanding properties like high conductivity and porosity can fulfill various requirements of energy storage devices. Most high-performance carbon materials, however, are extracted from fossil fuel by energy-intensive synthetic methods. Here comes an urgent need to reduce the production cost of carbon materials while maintaining their properties. Biomass is a promising renewable precursor of functional carbon materials for the next-generation energy storage system, on account of its abundance, sustainability, intriguing microstructures and low cost. Various carbon materials have been engineered from natural and renewable biomass resources by suitable activation and surface modification processes. As a result, their specific surface area, pore size distribution, porosity, surface chemistry and morphology have been rationally tuned and tailored to boost their electrochemical performance. In this review, the most updated research progress in the synthesis of biomass-derived carbon material for developing high-performance supercapacitors, rechargeable batteries and fuel cells are critically reviewed and summarized. For their practicability, several challenges that remain to be addressed are analyzed, and a perspective to the future research on biomass-derived carbons for energy storage is also discussed.

Suggested Citation

  • Zhu, Zongyuan & Xu, Zhen, 2020. "The rational design of biomass-derived carbon materials towards next-generation energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120305967
    DOI: 10.1016/j.rser.2020.110308
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120305967
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    2. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    3. Wilk, Małgorzata & Magdziarz, Aneta, 2017. "Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus," Energy, Elsevier, vol. 140(P1), pages 1292-1304.
    4. Al Arni, Saleh, 2018. "Comparison of slow and fast pyrolysis for converting biomass into fuel," Renewable Energy, Elsevier, vol. 124(C), pages 197-201.
    5. Kai Yan & Zhenda Lu & Hyun-Wook Lee & Feng Xiong & Po-Chun Hsu & Yuzhang Li & Jie Zhao & Steven Chu & Yi Cui, 2016. "Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth," Nature Energy, Nature, vol. 1(3), pages 1-8, March.
    6. Hadjipaschalis, Ioannis & Poullikkas, Andreas & Efthimiou, Venizelos, 2009. "Overview of current and future energy storage technologies for electric power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1513-1522, August.
    7. Yayuan Liu & Yangying Zhu & Yi Cui, 2019. "Challenges and opportunities towards fast-charging battery materials," Nature Energy, Nature, vol. 4(7), pages 540-550, July.
    8. Zhong, Kengqiang & Li, Meng & Yang, Yue & Zhang, Hongguo & Zhang, Bopeng & Tang, Jinfeng & Yan, Jia & Su, Minhua & Yang, Zhiquan, 2019. "Nitrogen-doped biochar derived from watermelon rind as oxygen reduction catalyst in air cathode microbial fuel cells," Applied Energy, Elsevier, vol. 242(C), pages 516-525.
    9. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    10. Lee, Jongkeun & Lee, Kwanyong & Sohn, Donghwan & Kim, Young Mo & Park, Ki Young, 2018. "Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel," Energy, Elsevier, vol. 153(C), pages 913-920.
    11. M. Salanne & B. Rotenberg & K. Naoi & K. Kaneko & P.-L. Taberna & C. P. Grey & B. Dunn & P. Simon, 2016. "Efficient storage mechanisms for building better supercapacitors," Nature Energy, Nature, vol. 1(6), pages 1-10, June.
    12. Qian, Kezhen & Kumar, Ajay & Zhang, Hailin & Bellmer, Danielle & Huhnke, Raymond, 2015. "Recent advances in utilization of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1055-1064.
    13. Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
    14. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    15. Liwei Jiang & Yaxiang Lu & Chenglong Zhao & Lilu Liu & Jienan Zhang & Qiangqiang Zhang & Xing Shen & Junmei Zhao & Xiqian Yu & Hong Li & Xuejie Huang & Liquan Chen & Yong-Sheng Hu, 2019. "Building aqueous K-ion batteries for energy storage," Nature Energy, Nature, vol. 4(6), pages 495-503, June.
    16. Abioye, Adekunle Moshood & Ani, Farid Nasir, 2015. "Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1282-1293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartoli, Mattia & Piovano, Alessandro & Elia, Giuseppe Antonio & Meligrana, Giuseppina & Pedraza, Riccardo & Pianta, Nicolò & Tealdi, Cristina & Pagot, Gioele & Negro, Enrico & Triolo, Claudia & Gomez, 2024. "Pristine and engineered biochar as Na-ion batteries anode material: A comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    2. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Lim, B.A. & Lim, S. & Pang, Y.L. & Shuit, S.H. & Kuan, S.H., 2023. "Critical review on the development of biomass waste as precursor for carbon material as electrocatalysts for metal-air batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Darmansyah, Darmansyah & You, Sheng-Jie & Wang, Ya-Fen, 2023. "Advancements of coal fly ash and its prospective implications for sustainable materials in Southeast Asian countries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Fangyuan Qian & Shuiye Niu & Yujuan Xi, 2022. "Multi-Technology Driven R&D Cost Improvement Scheme and Application Utility of EESP in Energy-Intensive Manufacturing Industry," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    6. Li, Dong & Guo, Yanchuan & Li, Yi & Liu, Zhengang & Chen, Zeliang, 2022. "Waste-biomass tar functionalized carbon spheres with N/P Co-doping and hierarchical pores as sustainable low-cost energy storage materials," Renewable Energy, Elsevier, vol. 188(C), pages 61-69.
    7. Ayub, Yousaf & Zhou, Jianzhao & Shen, Weifeng & Ren, Jingzheng, 2023. "Innovative valorization of biomass waste through integration of pyrolysis and gasification: Process design, optimization, and multi-scenario sustainability analysis," Energy, Elsevier, vol. 282(C).
    8. Li, Jun & Zhong, Dian & Zeng, Kuo & Chen, Xin & Wu, Boyang & Liu, Tianji & Yang, Haiping & Chen, Hanping, 2024. "Co-pyrolysis of algae and lignocellulosic biomass in molten salts to produce N-doped carbon for supercapacitor application," Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. Song, Jinghui & Wang, Ying & Zhang, Siqi & Song, Yanling & Xue, Shengrong & Liu, Le & Lvy, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2021. "Coupling biochar with anaerobic digestion in a circular economy perspective: A promising way to promote sustainable energy, environment and agriculture development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    5. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    6. Shi, Xiaogang & Ronsse, Frederik & Nachenius, Robert & Pieters, Jan G., 2019. "3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 2: Slow pyrolysis for char production," Renewable Energy, Elsevier, vol. 143(C), pages 1477-1487.
    7. Ngoc-Dan Cao, Thanh & Mukhtar, Hussnain & Yu, Chang-Ping & Bui, Xuan-Thanh & Pan, Shu-Yuan, 2022. "Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Umut Şen & Bruno Esteves & Helena Pereira, 2023. "Pyrolysis and Extraction of Bark in a Biorefineries Context: A Critical Review," Energies, MDPI, vol. 16(13), pages 1-23, June.
    9. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    10. Wang, Xiaoxiang & Cao, Li & Lewis, Rosmala & Hreid, Tubuxin & Zhang, Zhanying & Wang, Hongxia, 2020. "Biorefining of sugarcane bagasse to fermentable sugars and surface oxygen group-rich hierarchical porous carbon for supercapacitors," Renewable Energy, Elsevier, vol. 162(C), pages 2306-2317.
    11. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Yuchiao Lu & Hanmin Yang & Andrey V. Karasev & Chuan Wang & Pär G. Jönsson, 2022. "Applications of Hydrochar and Charcoal in the Iron and Steelmaking Industry—Part 1: Characterization of Carbonaceous Materials," Sustainability, MDPI, vol. 14(15), pages 1-27, August.
    13. Huanxin Li & Yi Gong & Haihui Zhou & Jing Li & Kai Yang & Boyang Mao & Jincan Zhang & Yan Shi & Jinhai Deng & Mingxuan Mao & Zhongyuan Huang & Shuqiang Jiao & Yafei Kuang & Yunlong Zhao & Shenglian Lu, 2023. "Ampere-hour-scale soft-package potassium-ion hybrid capacitors enabling 6-minute fast-charging," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Lee, Jechan & Kim, Ki-Hyun & Kwon, Eilhann E., 2017. "Biochar as a Catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 70-79.
    15. Chang, Boon Peng & Rodriguez-Uribe, Arturo & Mohanty, Amar K. & Misra, Manjusri, 2021. "A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Azzaz, Ahmed Amine & Khiari, Besma & Jellali, Salah & Ghimbeu, Camélia Matei & Jeguirim, Mejdi, 2020. "Hydrochars production, characterization and application for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Qaisar Abbas & Mojtaba Mirzaeian & Michael R.C. Hunt & Peter Hall & Rizwan Raza, 2020. "Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems," Energies, MDPI, vol. 13(21), pages 1-41, November.
    18. Liu, Tianyu & Wen, Chang & Li, Changkang & Yan, Kai & Li, Rui & Jing, Zhenqi & Zhang, Bohan & Ma, Jingjing, 2022. "Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: Fuel properties, combustion behaviors, and techno-economic assessments," Renewable Energy, Elsevier, vol. 200(C), pages 218-233.
    19. Elena Goldan & Valentin Nedeff & Narcis Barsan & Mihaela Culea & Claudia Tomozei & Mirela Panainte-Lehadus & Emilian Mosnegutu, 2022. "Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    20. Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:134:y:2020:i:c:s1364032120305967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.