IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47059-0.html
   My bibliography  Save this article

Drivers and implications of alternative routes to fuels decarbonization in net-zero energy systems

Author

Listed:
  • Bryan K. Mignone

    (ExxonMobil Technology and Engineering Company)

  • Leon Clarke

    (Bezos Earth Fund
    University of Maryland)

  • James A. Edmonds

    (Joint Global Change Research Institute)

  • Angelo Gurgel

    (Massachusetts Institute of Technology)

  • Howard J. Herzog

    (Massachusetts Institute of Technology)

  • Jeremiah X. Johnson

    (Construction, and Environmental Engineering, North Carolina State University)

  • Dharik S. Mallapragada

    (Massachusetts Institute of Technology)

  • Haewon McJeon

    (Joint Global Change Research Institute)

  • Jennifer Morris

    (Massachusetts Institute of Technology)

  • Patrick R. O’Rourke

    (University of Maryland
    Joint Global Change Research Institute)

  • Sergey Paltsev

    (Massachusetts Institute of Technology)

  • Steven K. Rose

    (EPRI)

  • Daniel C. Steinberg

    (National Renewable Energy Laboratory)

  • Aranya Venkatesh

    (Carnegie Mellon University
    EPRI)

Abstract

Energy transition scenarios are characterized by increasing electrification and improving efficiency of energy end uses, rapid decarbonization of the electric power sector, and deployment of carbon dioxide removal (CDR) technologies to offset remaining emissions. Although hydrocarbon fuels typically decline in such scenarios, significant volumes remain in many scenarios even at the time of net-zero emissions. While scenarios rely on different approaches for decarbonizing remaining fuels, the underlying drivers for these differences are unclear. Here we develop several illustrative net-zero systems in a simple structural energy model and show that, for a given set of final energy demands, assumptions about the use of biomass and CO2 sequestration drive key differences in how emissions from remaining fuels are mitigated. Limiting one resource may increase reliance on another, implying that decisions about using or restricting resources in pursuit of net-zero objectives could have significant tradeoffs that will need to be evaluated and managed.

Suggested Citation

  • Bryan K. Mignone & Leon Clarke & James A. Edmonds & Angelo Gurgel & Howard J. Herzog & Jeremiah X. Johnson & Dharik S. Mallapragada & Haewon McJeon & Jennifer Morris & Patrick R. O’Rourke & Sergey Pal, 2024. "Drivers and implications of alternative routes to fuels decarbonization in net-zero energy systems," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47059-0
    DOI: 10.1038/s41467-024-47059-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47059-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47059-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    2. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
    3. Jae Edmonds & Tom Wilson & Marshall Wise & John Weyant, 2006. "Electrification of the economy and CO2 emissions mitigation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 175-203, September.
    4. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Bataille, Christopher & Waisman, Henri & Vogt-Schilb, Adrien & Jaramillo, Marcela & Delgado, Ricardo & Arguello, Ricardo & Clarke, Leon & Wild, Thomas & Lallana, Francisco & Bravo, Gonzalo & Le Treut,, 2020. "Net-zero Deep Decarbonization Pathways in Latin America: Challenges and Opportunities," IDB Publications (Working Papers) 10702, Inter-American Development Bank.
    6. Detlef P. van Vuuren & Elke Stehfest & David E. H. J. Gernaat & Maarten Berg & David L. Bijl & Harmen Sytze Boer & Vassilis Daioglou & Jonathan C. Doelman & Oreane Y. Edelenbosch & Mathijs Harmsen & A, 2018. "Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies," Nature Climate Change, Nature, vol. 8(5), pages 391-397, May.
    7. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    8. Mr. Simon Black & Antung A. Liu & Ian W.H. Parry & Nate Vernon, 2023. "IMF Fossil Fuel Subsidies Data: 2023 Update," IMF Working Papers 2023/169, International Monetary Fund.
    9. Giulia Realmonte & Laurent Drouet & Ajay Gambhir & James Glynn & Adam Hawkes & Alexandre C. Köberle & Massimo Tavoni, 2019. "An inter-model assessment of the role of direct air capture in deep mitigation pathways," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    10. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    11. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    12. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Steven K. Rose & Alexander Popp & Shinichiro Fujimori & Petr Havlik & John Weyant & Marshall Wise & Detlef Vuuren & Thierry Brunelle & Ryna Yiyun Cui & Vassilis Daioglou & Stefan Frank & Tomoko Hasega, 2022. "Global biomass supply modeling for long-run management of the climate system," Climatic Change, Springer, vol. 172(1), pages 1-27, May.
    14. Bryan K. Mignone & Jonathan E. Huster & Sarah Torkamani & Patrick O’Rourke & Marshall Wise, 2022. "Changes In Global Land Use And Co2 Emissions From Us Bioethanol Production: What Drives Differences In Estimates Between Corn And Cellulosic Ethanol?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 1-20, November.
    15. Karen Fisher-Vanden & John Weyant, 2020. "The Evolution of Integrated Assessment: Developing the Next Generation of Use-Inspired Integrated Assessment Tools," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 471-487, October.
    16. James Glynn & Maurizio Gargiulo & Alessandro Chiodi & Paul Deane & Fionn Rogan & Brian Ó Gallachóir, 2019. "Zero carbon energy system pathways for Ireland consistent with the Paris Agreement," Climate Policy, Taylor & Francis Journals, vol. 19(1), pages 30-42, January.
    17. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    18. Steven Rose & Elmar Kriegler & Ruben Bibas & Katherine Calvin & Alexander Popp & Detlef Vuuren & John Weyant, 2014. "Bioenergy in energy transformation and climate management," Climatic Change, Springer, vol. 123(3), pages 477-493, April.
    19. Fabian Stenzel & Peter Greve & Wolfgang Lucht & Sylvia Tramberend & Yoshihide Wada & Dieter Gerten, 2021. "Irrigation of biomass plantations may globally increase water stress more than climate change," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Sarah M. Jordaan & Garvin A. Heath & Jordan Macknick & Brian W. Bush & Ehsan Mohammadi & Dan Ben-Horin & Victoria Urrea & Danielle Marceau, 2017. "Understanding the life cycle surface land requirements of natural gas-fired electricity," Nature Energy, Nature, vol. 2(10), pages 804-812, October.
    21. S. Pye & O. Broad & C. Bataille & P. Brockway & H. E. Daly & R. Freeman & A. Gambhir & O. Geden & F. Rogan & S. Sanghvi & J. Tomei & I. Vorushylo & J. Watson, 2021. "Modelling net-zero emissions energy systems requires a change in approach," Climate Policy, Taylor & Francis Journals, vol. 21(2), pages 222-231, February.
    22. Davide Tonelli & Lorenzo Rosa & Paolo Gabrielli & Ken Caldeira & Alessandro Parente & Francesco Contino, 2023. "Global land and water limits to electrolytic hydrogen production using wind and solar resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    3. Julianne DeAngelo & Inês Azevedo & John Bistline & Leon Clarke & Gunnar Luderer & Edward Byers & Steven J. Davis, 2021. "Energy systems in scenarios at net-zero CO2 emissions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Shinichiro Fujimori & Tomoko Hasegawa & Volker Krey & Keywan Riahi & Christoph Bertram & Benjamin Leon Bodirsky & Valentina Bosetti & Jessica Callen & Jacques Després & Jonathan Doelman & Laurent Drou, 2019. "A multi-model assessment of food security implications of climate change mitigation," Nature Sustainability, Nature, vol. 2(5), pages 386-396, May.
    5. Yang Ou & Christopher Roney & Jameel Alsalam & Katherine Calvin & Jared Creason & Jae Edmonds & Allen A. Fawcett & Page Kyle & Kanishka Narayan & Patrick O’Rourke & Pralit Patel & Shaun Ragnauth & Ste, 2021. "Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Shu, David Yang & Deutz, Sarah & Winter, Benedikt Alexander & Baumgärtner, Nils & Leenders, Ludger & Bardow, André, 2023. "The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    9. Camilla C. N. Oliveira & Gerd Angelkorte & Pedro R. R. Rochedo & Alexandre Szklo, 2021. "The role of biomaterials for the energy transition from the lens of a national integrated assessment model," Climatic Change, Springer, vol. 167(3), pages 1-22, August.
    10. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Wu, Yazhen & Deppermann, Andre & Havlík, Petr & Frank, Stefan & Ren, Ming & Zhao, Hao & Ma, Lin & Fang, Chen & Chen, Qi & Dai, Hancheng, 2023. "Global land-use and sustainability implications of enhanced bioenergy import of China," Applied Energy, Elsevier, vol. 336(C).
    12. Arent, Douglas J. & Green, Peter & Abdullah, Zia & Barnes, Teresa & Bauer, Sage & Bernstein, Andrey & Berry, Derek & Berry, Joe & Burrell, Tony & Carpenter, Birdie & Cochran, Jaquelin & Cortright, Ran, 2022. "Challenges and opportunities in decarbonizing the U.S. energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. John E. T. Bistline & Geoffrey Blanford & John Grant & Eladio Knipping & David L. McCollum & Uarporn Nopmongcol & Heidi Scarth & Tejas Shah & Greg Yarwood, 2022. "Economy-wide evaluation of CO2 and air quality impacts of electrification in the United States," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J. Gidden & Estsushi Kato & Steven K. R, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    16. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    17. Le Treut, Gaëlle & Lefèvre, Julien & Lallana, Francisco & Bravo, Gonzalo, 2021. "The multi-level economic impacts of deep decarbonization strategies for the energy system," Energy Policy, Elsevier, vol. 156(C).
    18. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. Ajay Gambhir & Laurent Drouet & David McCollum & Tamaryn Napp & Dan Bernie & Adam Hawkes & Oliver Fricko & Petr Havlik & Keywan Riahi & Valentina Bosetti & Jason Lowe, 2017. "Assessing the Feasibility of Global Long-Term Mitigation Scenarios," Energies, MDPI, vol. 10(1), pages 1-31, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47059-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.