IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46851-2.html
   My bibliography  Save this article

Large exchange-driven intrinsic circular dichroism of a chiral 2D hybrid perovskite

Author

Listed:
  • Shunran Li

    (Yale University
    Yale University)

  • Xian Xu

    (Yale University
    Yale University)

  • Conrad A. Kocoj

    (Yale University
    Yale University)

  • Chenyu Zhou

    (Brookhaven National Laboratory)

  • Yanyan Li

    (Yale University
    Yale University)

  • Du Chen

    (Yale University
    Yale University)

  • Joseph A. Bennett

    (Yale University
    Yale University)

  • Sunhao Liu

    (Virginia Tech)

  • Lina Quan

    (Virginia Tech
    Virginia Tech)

  • Suchismita Sarker

    (Cornell University)

  • Mingzhao Liu

    (Brookhaven National Laboratory)

  • Diana Y. Qiu

    (Yale University
    Yale University)

  • Peijun Guo

    (Yale University
    Yale University)

Abstract

In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications.

Suggested Citation

  • Shunran Li & Xian Xu & Conrad A. Kocoj & Chenyu Zhou & Yanyan Li & Du Chen & Joseph A. Bennett & Sunhao Liu & Lina Quan & Suchismita Sarker & Mingzhao Liu & Diana Y. Qiu & Peijun Guo, 2024. "Large exchange-driven intrinsic circular dichroism of a chiral 2D hybrid perovskite," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46851-2
    DOI: 10.1038/s41467-024-46851-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46851-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46851-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manoj K. Jana & Ruyi Song & Haoliang Liu & Dipak Raj Khanal & Svenja M. Janke & Rundong Zhao & Chi Liu & Z. Valy Vardeny & Volker Blum & David B. Mitzi, 2020. "Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Manoj K. Jana & Ruyi Song & Yi Xie & Rundong Zhao & Peter C. Sercel & Volker Blum & David B. Mitzi, 2021. "Structural descriptor for enhanced spin-splitting in 2D hybrid perovskites," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Hsinhan Tsai & Wanyi Nie & Jean-Christophe Blancon & Constantinos C. Stoumpos & Reza Asadpour & Boris Harutyunyan & Amanda J. Neukirch & Rafael Verduzco & Jared J. Crochet & Sergei Tretiak & Laurent P, 2016. "High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells," Nature, Nature, vol. 536(7616), pages 312-316, August.
    4. Sunihl Ma & Young-Kwang Jung & Jihoon Ahn & Jihoon Kyhm & Jeiwan Tan & Hyungsoo Lee & Gyumin Jang & Chan Uk Lee & Aron Walsh & Jooho Moon, 2022. "Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaehyun Son & Sunihl Ma & Young-Kwang Jung & Jeiwan Tan & Gyumin Jang & Hyungsoo Lee & Chan Uk Lee & Junwoo Lee & Subin Moon & Wooyong Jeong & Aron Walsh & Jooho Moon, 2023. "Unraveling chirality transfer mechanism by structural isomer-derived hydrogen bonding interaction in 2D chiral perovskite," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Shreetu Shrestha & Mingxing Li & Suji Park & Xiao Tong & Donald DiMarzio & Mircea Cotlet, 2023. "Room temperature valley polarization via spin selective charge transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Sunihl Ma & Young-Kwang Jung & Jihoon Ahn & Jihoon Kyhm & Jeiwan Tan & Hyungsoo Lee & Gyumin Jang & Chan Uk Lee & Aron Walsh & Jooho Moon, 2022. "Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Cheng-Chieh Lin & Shing-Jong Huang & Pei-Hao Wu & Tzu-Pei Chen & Chih-Ying Huang & Ying-Chiao Wang & Po-Tuan Chen & Denitsa Radeva & Ognyan Petrov & Vladimir M. Gelev & Raman Sankar & Chia-Chun Chen &, 2022. "Direct investigation of the reorientational dynamics of A-site cations in 2D organic-inorganic hybrid perovskite by solid-state NMR," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Junqing Xu & Kejun Li & Uyen N. Huynh & Mayada Fadel & Jinsong Huang & Ravishankar Sundararaman & Valy Vardeny & Yuan Ping, 2024. "How spin relaxes and dephases in bulk halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Yiyang Gong & Shuai Yue & Yin Liang & Wenna Du & Tieyuan Bian & Chuanxiu Jiang & Xiaotian Bao & Shuai Zhang & Mingzhu Long & Guofu Zhou & Jun Yin & Shibin Deng & Qing Zhang & Bo Wu & Xinfeng Liu, 2024. "Boosting exciton mobility approaching Mott-Ioffe-Regel limit in Ruddlesden−Popper perovskites by anchoring the organic cation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Xixiang Zhu & Liping Peng & Jinpeng Li & Haomiao Yu & Yulin Xie, 2021. "Formation of a Fast Charge Transfer Channel in Quasi-2D Perovskite Solar Cells through External Electric Field Modulation," Energies, MDPI, vol. 14(21), pages 1-10, November.
    8. Dhruba B. Khadka & Yasuhiro Shirai & Masatoshi Yanagida & Hitoshi Ota & Andrey Lyalin & Tetsuya Taketsugu & Kenjiro Miyano, 2024. "Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Chang-Chun Fan & Cheng-Dong Liu & Bei-Dou Liang & Wei Wang & Ming-Liang Jin & Chao-Yang Chai & Chang-Qing Jing & Tong-Yu Ju & Xiang-Bin Han & Wen Zhang, 2024. "Tuning ferroelectric phase transition temperature by enantiomer fraction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Liangliang Min & Haoxuan Sun & Linqi Guo & Meng Wang & Fengren Cao & Jun Zhong & Liang Li, 2024. "Frequency-selective perovskite photodetector for anti-interference optical communications," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Xiaoming Zhao & Melissa L. Ball & Arvin Kakekhani & Tianran Liu & Andrew M. Rappe & Yueh-Lin Loo, 2022. "A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Raman, Rohith Kumar & Gurusamy Thangavelu, Senthil A. & Venkataraj, Selvaraj & Krishnamoorthy, Ananthanarayanan, 2021. "Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Priyadarshini, P. & Senapati, S. & Naik, R., 2023. "Lead-free organic inorganic hybrid halide perovskites: An emerging candidate for bifunctional applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    14. Alyahya, Mansour & Agag, Gomaa & Aliedan, Meqbel & Abdelmoety, Ziad H., 2023. "Understanding the factors affecting consumers’ behaviour when purchasing refurbished products: A chaordic perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    15. Dejian Yu & Fei Cao & Jinfeng Liao & Bingzhe Wang & Chenliang Su & Guichuan Xing, 2022. "Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Nian Li & Shambhavi Pratap & Volker Körstgens & Sundeep Vema & Lin Song & Suzhe Liang & Anton Davydok & Christina Krywka & Peter Müller-Buschbaum, 2022. "Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Weichuan Zhang & Ziyuan Liu & Lizhi Zhang & Hui Wang & Chuanxiu Jiang & Xianxin Wu & Chuanyun Li & Shengli Yue & Rongsheng Yang & Hong Zhang & Jianqi Zhang & Xinfeng Liu & Yuan Zhang & Huiqiong Zhou, 2024. "Ultrastable and efficient slight-interlayer-displacement 2D Dion-Jacobson perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Angelica Simbula & Luyan Wu & Federico Pitzalis & Riccardo Pau & Stefano Lai & Fang Liu & Selene Matta & Daniela Marongiu & Francesco Quochi & Michele Saba & Andrea Mura & Giovanni Bongiovanni, 2023. "Exciton dissociation in 2D layered metal-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Yajie Yan & Yingguo Yang & Mingli Liang & Mohamed Abdellah & Tõnu Pullerits & Kaibo Zheng & Ziqi Liang, 2021. "Implementing an intermittent spin-coating strategy to enable bottom-up crystallization in layered halide perovskites," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46851-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.