IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46612-1.html
   My bibliography  Save this article

Quantum spin liquid signatures in monolayer 1T-NbSe2

Author

Listed:
  • Quanzhen Zhang

    (Beijing Institute of Technology)

  • Wen-Yu He

    (ShanghaiTech University)

  • Yu Zhang

    (Beijing Institute of Technology
    Beijing Institute of Technology)

  • Yaoyao Chen

    (Beijing Institute of Technology)

  • Liangguang Jia

    (Beijing Institute of Technology)

  • Yanhui Hou

    (Beijing Institute of Technology)

  • Hongyan Ji

    (Beijing Institute of Technology)

  • Huixia Yang

    (Beijing Institute of Technology)

  • Teng Zhang

    (Beijing Institute of Technology)

  • Liwei Liu

    (Beijing Institute of Technology)

  • Hong-Jun Gao

    (Chinese Academy of Sciences)

  • Thomas A. Jung

    (Paul Scherrer Institut (PSI))

  • Yeliang Wang

    (Beijing Institute of Technology
    Beijing Institute of Technology)

Abstract

Quantum spin liquids (QSLs) are in a quantum disordered state that is highly entangled and has fractional excitations. As a highly sought-after state of matter, QSLs were predicted to host spinon excitations and to arise in frustrated spin systems with large quantum fluctuations. Here we report on the experimental observation and theoretical modeling of QSL signatures in monolayer 1T-NbSe2, which is a newly emerging two-dimensional material that exhibits both charge-density-wave (CDW) and correlated insulating behaviors. By using scanning tunneling microscopy and spectroscopy (STM/STS), we confirm the presence of spin fluctuations in monolayer 1T-NbSe2 by observing the Kondo resonance as monolayer 1T-NbSe2 interacts with metallic monolayer 1H-NbSe2. Subsequent STM/STS imaging of monolayer 1T-NbSe2 at the Hubbard band energy further reveals a long-wavelength charge modulation, in agreement with the spinon modulation expected for QSLs. By depositing manganese-phthalocyanine (MnPc) molecules with spin S = 3/2 onto monolayer 1T-NbSe2, new STS resonance peaks emerge at the Hubbard band edges of monolayer 1T-NbSe2. This observation is consistent with the spinon Kondo effect induced by a S = 3/2 magnetic impurity embedded in a QSL. Taken together, these experimental observations indicate that monolayer 1T-NbSe2 is a new promising QSL material.

Suggested Citation

  • Quanzhen Zhang & Wen-Yu He & Yu Zhang & Yaoyao Chen & Liangguang Jia & Yanhui Hou & Hongyan Ji & Huixia Yang & Teng Zhang & Liwei Liu & Hong-Jun Gao & Thomas A. Jung & Yeliang Wang, 2024. "Quantum spin liquid signatures in monolayer 1T-NbSe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46612-1
    DOI: 10.1038/s41467-024-46612-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46612-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46612-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shiwei Shen & Chenhaoping Wen & Pengfei Kong & Jingjing Gao & Jianguo Si & Xuan Luo & Wenjian Lu & Yuping Sun & Gang Chen & Shichao Yan, 2022. "Inducing and tuning Kondo screening in a narrow-electronic-band system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. C. J. Butler & M. Yoshida & T. Hanaguri & Y. Iwasa, 2020. "Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. Yao Shen & Yao-Dong Li & Hongliang Wo & Yuesheng Li & Shoudong Shen & Bingying Pan & Qisi Wang & H. C. Walker & P. Steffens & M. Boehm & Yiqing Hao & D. L. Quintero-Castro & L. W. Harriger & M. D. Fro, 2016. "Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate," Nature, Nature, vol. 540(7634), pages 559-562, December.
    4. Leon Balents, 2010. "Spin liquids in frustrated magnets," Nature, Nature, vol. 464(7286), pages 199-208, March.
    5. Eylon Persky & Anders V. Bjørlig & Irena Feldman & Avior Almoalem & Ehud Altman & Erez Berg & Itamar Kimchi & Jonathan Ruhman & Amit Kanigel & Beena Kalisky, 2022. "Magnetic memory and spontaneous vortices in a van der Waals superconductor," Nature, Nature, vol. 607(7920), pages 692-696, July.
    6. Xuan Song & Liwei Liu & Yaoyao Chen & Han Yang & Zeping Huang & Baofei Hou & Yanhui Hou & Xu Han & Huixia Yang & Quanzhen Zhang & Teng Zhang & Jiadong Zhou & Yuan Huang & Yu Zhang & Hong-Jun Gao & Yel, 2022. "Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. S. Bozin & M. Abeykoon & S. Conradson & G. Baldinozzi & P. Sutar & D. Mihailovic, 2023. "Crystallization of polarons through charge and spin ordering transitions in 1T-TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Han Li & Enze Lv & Ning Xi & Yuan Gao & Yang Qi & Wei Li & Gang Su, 2024. "Magnetocaloric effect of topological excitations in Kitaev magnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Yuki Nakata & Katsuaki Sugawara & Ashish Chainani & Hirofumi Oka & Changhua Bao & Shaohua Zhou & Pei-Yu Chuang & Cheng-Maw Cheng & Tappei Kawakami & Yasuaki Saruta & Tomoteru Fukumura & Shuyun Zhou & , 2021. "Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Yihao Wang & Zhihao Li & Xuan Luo & Jingjing Gao & Yuyan Han & Jialiang Jiang & Jin Tang & Huanxin Ju & Tongrui Li & Run Lv & Shengtao Cui & Yingguo Yang & Yuping Sun & Junfa Zhu & Xingyu Gao & Wenjia, 2024. "Dualistic insulator states in 1T-TaS2 crystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Yan Zhao & Zhengwei Nie & Hao Hong & Xia Qiu & Shiyi Han & Yue Yu & Mengxi Liu & Xiaohui Qiu & Kaihui Liu & Sheng Meng & Lianming Tong & Jin Zhang, 2023. "Spectroscopic visualization and phase manipulation of chiral charge density waves in 1T-TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Shingo Toyoda & Manfred Fiebig & Lea Forster & Taka-hisa Arima & Yoshinori Tokura & Naoki Ogawa, 2021. "Writing of strain-controlled multiferroic ribbons into MnWO4," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    7. Avior Almoalem & Irena Feldman & Ilay Mangel & Michael Shlafman & Yuval E. Yaish & Mark H. Fischer & Michael Moshe & Jonathan Ruhman & Amit Kanigel, 2024. "The observation of π-shifts in the Little-Parks effect in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Bin Gao & Tong Chen & Xiao-Chuan Wu & Michael Flynn & Chunruo Duan & Lebing Chen & Chien-Lung Huang & Jesse Liebman & Shuyi Li & Feng Ye & Matthew B. Stone & Andrey Podlesnyak & Douglas L. Abernathy &, 2023. "Diffusive excitonic bands from frustrated triangular sublattice in a singlet-ground-state system," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Kai Fan & Heng Jin & Bing Huang & Guijing Duan & Rong Yu & Zhen-Yu Liu & Hui-Nan Xia & Li-Si Liu & Yao Zhang & Tao Xie & Qiao-Yin Tang & Gang Chen & Wen-Hao Zhang & F. C. Chen & X. Luo & W. J. Lu & Y., 2024. "Artificial superconducting Kondo lattice in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. I. Silber & S. Mathimalar & I. Mangel & A. K. Nayak & O. Green & N. Avraham & H. Beidenkopf & I. Feldman & A. Kanigel & A. Klein & M. Goldstein & A. Banerjee & E. Sela & Y. Dagan, 2024. "Two-component nematic superconductivity in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    11. Wen Wan & Rishav Harsh & Antonella Meninno & Paul Dreher & Sandra Sajan & Haojie Guo & Ion Errea & Fernando Juan & Miguel M. Ugeda, 2023. "Evidence for ground state coherence in a two-dimensional Kondo lattice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Daniel Lozano-Gómez & Yasir Iqbal & Matthias Vojta, 2024. "A classical chiral spin liquid from chiral interactions on the pyrochlore lattice," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Tao Hong & Tao Ying & Qing Huang & Sachith E. Dissanayake & Yiming Qiu & Mark M. Turnbull & Andrey A. Podlesnyak & Yan Wu & Huibo Cao & Yaohua Liu & Izuru Umehara & Jun Gouchi & Yoshiya Uwatoko & Masa, 2022. "Evidence for pressure induced unconventional quantum criticality in the coupled spin ladder antiferromagnet C9H18N2CuBr4," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Chenli Huang & Rong Sun & Lipiao Bao & Xinyue Tian & Changwang Pan & Mengyang Li & Wangqiang Shen & Kun Guo & Bingwu Wang & Xing Lu & Song Gao, 2023. "A hard molecular nanomagnet from confined paramagnetic 3d-4f spins inside a fullerene cage," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Shao-Bo Liu & Congkuan Tian & Yuqiang Fang & Hongtao Rong & Lu Cao & Xinjian Wei & Hang Cui & Mantang Chen & Di Chen & Yuanjun Song & Jian Cui & Jiankun Li & Shuyue Guan & Shuang Jia & Chaoyu Chen & W, 2024. "Nematic Ising superconductivity with hidden magnetism in few-layer 6R-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Xiaohu Zheng & Zheng-Xin Liu & Cuiwei Zhang & Huaxue Zhou & Chongli Yang & Youguo Shi & Katsumi Tanigaki & Rui-Rui Du, 2024. "Incommensurate charge super-modulation and hidden dipole order in layered kitaev material α-RuCl3," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Ying Xiang & Qing Li & Yongkai Li & Wei Xie & Huan Yang & Zhiwei Wang & Yugui Yao & Hai-Hu Wen, 2021. "Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    18. Q. Stahl & T. Ritschel & G. Garbarino & F. Cova & A. Isaeva & T. Doert & J. Geck, 2024. "Pressure-tuning of α-RuCl3 towards a quantum spin liquid," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Schmidt, M. & Zimmer, F.M. & Magalhaes, S.G., 2015. "Spin glass induced by infinitesimal disorder in geometrically frustrated kagome lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 416-423.
    20. Youngsu Choi & Suheon Lee & Je-Ho Lee & Seungyeol Lee & Maeng-Je Seong & Kwang-Yong Choi, 2021. "Bosonic spinons in anisotropic triangular antiferromagnets," Nature Communications, Nature, vol. 12(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46612-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.