IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29891-4.html
   My bibliography  Save this article

Inducing and tuning Kondo screening in a narrow-electronic-band system

Author

Listed:
  • Shiwei Shen

    (ShanghaiTech University)

  • Chenhaoping Wen

    (ShanghaiTech University)

  • Pengfei Kong

    (ShanghaiTech University)

  • Jingjing Gao

    (Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences
    University of Science and Technology of China)

  • Jianguo Si

    (Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences)

  • Xuan Luo

    (Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences)

  • Wenjian Lu

    (Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences)

  • Yuping Sun

    (Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences
    High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences
    Nanjing University)

  • Gang Chen

    (The University of Hong Kong)

  • Shichao Yan

    (ShanghaiTech University
    ShanghaiTech University)

Abstract

Although the single-impurity Kondo physics has already been well understood, the understanding of the Kondo lattice where a dense array of local moments couples to the conduction electrons is still far from complete. The ability of creating and tuning the Kondo lattice in non-f-electron systems will be great helpful for further understanding the Kondo lattice behavior. Here we show that the Pb intercalation in the charge-density-wave-driven narrow-electronic-band system 1T-TaS2 induces a transition from the insulating gap to a sharp Kondo resonance in the scanning tunneling microscopy measurements. It results from the Kondo screening of the localized moments in the 13-site Star-of-David clusters of 1T-TaS2. As increasing the Pb concentration, the narrow electronic band derived from the localized electrons shifts away from the Fermi level and the Kondo resonance peak is gradually suppressed. Our results pave the way for creating and tuning many-body electronic states in layered narrow-electronic-band materials.

Suggested Citation

  • Shiwei Shen & Chenhaoping Wen & Pengfei Kong & Jingjing Gao & Jianguo Si & Xuan Luo & Wenjian Lu & Yuping Sun & Gang Chen & Shichao Yan, 2022. "Inducing and tuning Kondo screening in a narrow-electronic-band system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29891-4
    DOI: 10.1038/s41467-022-29891-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29891-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29891-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. J. Butler & M. Yoshida & T. Hanaguri & Y. Iwasa, 2020. "Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    2. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    3. Y. D. Wang & W. L. Yao & Z. M. Xin & T. T. Han & Z. G. Wang & L. Chen & C. Cai & Yuan Li & Y. Zhang, 2020. "Band insulator to Mott insulator transition in 1T-TaS2," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Fan & Heng Jin & Bing Huang & Guijing Duan & Rong Yu & Zhen-Yu Liu & Hui-Nan Xia & Li-Si Liu & Yao Zhang & Tao Xie & Qiao-Yin Tang & Gang Chen & Wen-Hao Zhang & F. C. Chen & X. Luo & W. J. Lu & Y., 2024. "Artificial superconducting Kondo lattice in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. W. Simeth & Z. Wang & E. A. Ghioldi & D. M. Fobes & A. Podlesnyak & N. H. Sung & E. D. Bauer & J. Lass & S. Flury & J. Vonka & D. G. Mazzone & C. Niedermayer & Yusuke Nomura & Ryotaro Arita & C. D. Ba, 2023. "A microscopic Kondo lattice model for the heavy fermion antiferromagnet CeIn3," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Quanzhen Zhang & Wen-Yu He & Yu Zhang & Yaoyao Chen & Liangguang Jia & Yanhui Hou & Hongyan Ji & Huixia Yang & Teng Zhang & Liwei Liu & Hong-Jun Gao & Thomas A. Jung & Yeliang Wang, 2024. "Quantum spin liquid signatures in monolayer 1T-NbSe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Wen Wan & Rishav Harsh & Antonella Meninno & Paul Dreher & Sandra Sajan & Haojie Guo & Ion Errea & Fernando Juan & Miguel M. Ugeda, 2023. "Evidence for ground state coherence in a two-dimensional Kondo lattice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Zhen-Yu Liu & Heng Jin & Yao Zhang & Kai Fan & Ting-Fei Guo & Hao-Jun Qin & Lan-Fang Zhu & Lian-Zhi Yang & Wen-Hao Zhang & Bing Huang & Ying-Shuang Fu, 2024. "Charge-density wave mediated quasi-one-dimensional Kondo lattice in stripe-phase monolayer 1T-NbSe2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. S. Bozin & M. Abeykoon & S. Conradson & G. Baldinozzi & P. Sutar & D. Mihailovic, 2023. "Crystallization of polarons through charge and spin ordering transitions in 1T-TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yuki Nakata & Katsuaki Sugawara & Ashish Chainani & Hirofumi Oka & Changhua Bao & Shaohua Zhou & Pei-Yu Chuang & Cheng-Maw Cheng & Tappei Kawakami & Yasuaki Saruta & Tomoteru Fukumura & Shuyun Zhou & , 2021. "Robust charge-density wave strengthened by electron correlations in monolayer 1T-TaSe2 and 1T-NbSe2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Sung-Hoon Lee & Doohee Cho, 2023. "Charge density wave surface reconstruction in a van der Waals layered material," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Seyeong Cha & Giyeok Lee & Sol Lee & Sae Hee Ryu & Yeongsup Sohn & Gijeong An & Changmo Kang & Minsu Kim & Kwanpyo Kim & Aloysius Soon & Keun Su Kim, 2023. "Order-disorder phase transition driven by interlayer sliding in lead iodides," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Yihao Wang & Zhihao Li & Xuan Luo & Jingjing Gao & Yuyan Han & Jialiang Jiang & Jin Tang & Huanxin Ju & Tongrui Li & Run Lv & Shengtao Cui & Yingguo Yang & Yuping Sun & Junfa Zhu & Xingyu Gao & Wenjia, 2024. "Dualistic insulator states in 1T-TaS2 crystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. He Wang & Yanzhao Liu & Ming Gong & Hua Jiang & Xiaoyue Gao & Wenlong Ma & Jiawei Luo & Haoran Ji & Jun Ge & Shuang Jia & Peng Gao & Ziqiang Wang & X. C. Xie & Jian Wang, 2023. "Emergent superconductivity in topological-kagome-magnet/metal heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. J. Díez-Mérida & A. Díez-Carlón & S. Y. Yang & Y.-M. Xie & X.-J. Gao & J. Senior & K. Watanabe & T. Taniguchi & X. Lu & A. P. Higginbotham & K. T. Law & Dmitri K. Efetov, 2023. "Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Yuhao Ye & Jinhua Wang & Pan Nie & Huakun Zuo & Xiaokang Li & Kamran Behnia & Zengwei Zhu & Benoît Fauqué, 2024. "Tuning the BCS-BEC crossover of electron-hole pairing with pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    9. Li Chen & Cong Lin & Diwei Shi & Xuanyu Huang & Quanshui Zheng & Jinhui Nie & Ming Ma, 2023. "Fully automatic transfer and measurement system for structural superlubric materials," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Xinyu Wang & Jinghua Jiang & Juan Chen & Zhawure Asilehan & Wentao Tang & Chenhui Peng & Rui Zhang, 2024. "Moiré effect enables versatile design of topological defects in nematic liquid crystals," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Alejandro Ruiz & Brandon Gunn & Yi Lu & Kalyan Sasmal & Camilla M. Moir & Rourav Basak & Hai Huang & Jun-Sik Lee & Fanny Rodolakis & Timothy J. Boyle & Morgan Walker & Yu He & Santiago Blanco-Canosa &, 2022. "Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Kaijie Yang & Zian Xu & Yanjie Feng & Frank Schindler & Yuanfeng Xu & Zhen Bi & B. Andrei Bernevig & Peizhe Tang & Chao-Xing Liu, 2024. "Topological minibands and interaction driven quantum anomalous Hall state in topological insulator based moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Avior Almoalem & Irena Feldman & Ilay Mangel & Michael Shlafman & Yuval E. Yaish & Mark H. Fischer & Michael Moshe & Jonathan Ruhman & Amit Kanigel, 2024. "The observation of π-shifts in the Little-Parks effect in 4Hb-TaS2," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Märta A. Tschudin & David A. Broadway & Patrick Siegwolf & Carolin Schrader & Evan J. Telford & Boris Gross & Jordan Cox & Adrien E. E. Dubois & Daniel G. Chica & Ricardo Rama-Eiroa & Elton J. G. Sant, 2024. "Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Yuri Saida & Thomas Gauthier & Hiroo Suzuki & Satoshi Ohmura & Ryo Shikata & Yui Iwasaki & Godai Noyama & Misaki Kishibuchi & Yuichiro Tanaka & Wataru Yajima & Nicolas Godin & Gaël Privault & Tomoharu, 2024. "Photoinduced dynamics during electronic transfer from narrow to wide bandgap layers in one-dimensional heterostructured materials," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29891-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.