Author
Listed:
- Jing Jiang
(Northwest Institute of Eco-Environment and Resources, CAS)
- Yuanming Lai
(Northwest Institute of Eco-Environment and Resources, CAS
Chongqing Jiaotong University)
- Daichao Sheng
(University of Technology Sydney)
- Guihua Tang
(Xi’an Jiaotong University)
- Mingyi Zhang
(Northwest Institute of Eco-Environment and Resources, CAS)
- Dong Niu
(Dalian Maritime University)
- Fan Yu
(Northwest Institute of Eco-Environment and Resources, CAS)
Abstract
Icing plays an important role in various physical-chemical process. Although the formation of two-dimensional ice requires nanoscale confinement, two-dimensional bilayer ice in coexistence with three-dimensional ice without confinement remains poorly understood. Here, a critical value of a surface energy parameter is identified to characterize the liquid-solid interface interaction, above which two-dimensional and three-dimensional coexisting ice can surprisingly form on the surface. The two-dimensional ice growth mechanisms could be revealed by capturing the growth and merged of the metastable edge structures. The phase diagram about temperature and pressure vs energy parameters is predicted to distinguish liquid water, two-dimensional ice and three-dimensional ice. Furthermore, the deicing characteristics of coexisting ice demonstrate that the ice adhesion strength is linearly related to the ratio of ice-surface interaction energy to ice temperature. In addition, for gas-solid phase transition, the phase diagram about temperature and energy parameters is predicted to distinguish gas, liquid water, two-dimensional ice and three-dimensional ice. This work gives a perspective for studying the singular structure and dynamics of ice in nanoscale and provides a guide for future experimental realization of the coexisting ice.
Suggested Citation
Jing Jiang & Yuanming Lai & Daichao Sheng & Guihua Tang & Mingyi Zhang & Dong Niu & Fan Yu, 2024.
"Two-dimensional bilayer ice in coexistence with three-dimensional ice without confinement,"
Nature Communications, Nature, vol. 15(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50187-2
DOI: 10.1038/s41467-024-50187-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50187-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.