IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45251-w.html
   My bibliography  Save this article

Ran-GTP assembles a specialized spindle structure for accurate chromosome segregation in medaka early embryos

Author

Listed:
  • Ai Kiyomitsu

    (Okinawa Institute of Science and Technology Graduate University)

  • Toshiya Nishimura

    (Nagoya University, Chikusa-ku
    Hokkaido University Fisheries Sciences)

  • Shiang Jyi Hwang

    (Okinawa Institute of Science and Technology Graduate University)

  • Satoshi Ansai

    (Tohoku University
    Kyoto University, Sakyo-ku)

  • Masato T. Kanemaki

    (Research Organization of Information and Systems (ROIS), and Graduate Institute for Advanced Studies
    The University of Tokyo)

  • Minoru Tanaka

    (Nagoya University, Chikusa-ku)

  • Tomomi Kiyomitsu

    (Okinawa Institute of Science and Technology Graduate University)

Abstract

Despite drastic cellular changes during cleavage, a mitotic spindle assembles in each blastomere to accurately segregate duplicated chromosomes. Mechanisms of mitotic spindle assembly have been extensively studied using small somatic cells. However, mechanisms of spindle assembly in large vertebrate embryos remain little understood. Here, we establish functional assay systems in medaka (Oryzias latipes) embryos by combining CRISPR knock-in with auxin-inducible degron technology. Live imaging reveals several unexpected features of microtubule organization and centrosome positioning that achieve rapid, accurate cleavage. Importantly, Ran-GTP assembles a dense microtubule network at the metaphase spindle center that is essential for chromosome segregation in early embryos. This unique spindle structure is remodeled into a typical short, somatic-like spindle after blastula stages, when Ran-GTP becomes dispensable for chromosome segregation. We propose that despite the presence of centrosomes, the chromosome-derived Ran-GTP pathway has essential roles in functional spindle assembly in large, rapidly dividing vertebrate early embryos, similar to acentrosomal spindle assembly in oocytes.

Suggested Citation

  • Ai Kiyomitsu & Toshiya Nishimura & Shiang Jyi Hwang & Satoshi Ansai & Masato T. Kanemaki & Minoru Tanaka & Tomomi Kiyomitsu, 2024. "Ran-GTP assembles a specialized spindle structure for accurate chromosome segregation in medaka early embryos," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45251-w
    DOI: 10.1038/s41467-024-45251-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45251-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45251-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daigo Inoue & Manuel Stemmer & Thomas Thumberger & Thomas Ruppert & Felix Bärenz & Joachim Wittbrodt & Oliver J. Gruss, 2017. "Expression of the novel maternal centrosome assembly factor Wdr8 is required for vertebrate embryonic mitoses," Nature Communications, Nature, vol. 8(1), pages 1-12, April.
    2. Petr Kaláb & Arnd Pralle & Ehud Y. Isacoff & Rebecca Heald & Karsten Weis, 2006. "Analysis of a RanGTP-regulated gradient in mitotic somatic cells," Nature, Nature, vol. 440(7084), pages 697-701, March.
    3. Aisha Yesbolatova & Yuichiro Saito & Naomi Kitamoto & Hatsune Makino-Itou & Rieko Ajima & Risako Nakano & Hirofumi Nakaoka & Kosuke Fukui & Kanae Gamo & Yusuke Tominari & Haruki Takeuchi & Yumiko Saga, 2020. "The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    4. Ravindra D. Makde & Joseph R. England & Hemant P. Yennawar & Song Tan, 2010. "Structure of RCC1 chromatin factor bound to the nucleosome core particle," Nature, Nature, vol. 467(7315), pages 562-566, September.
    5. Janko Kajtez & Anastasia Solomatina & Maja Novak & Bruno Polak & Kruno Vukušić & Jonas Rüdiger & Gheorghe Cojoc & Ana Milas & Ivana Šumanovac Šestak & Patrik Risteski & Federica Tavano & Anna H. Klemm, 2016. "Overlap microtubules link sister k-fibres and balance the forces on bi-oriented kinetochores," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
    6. Rafael E. Carazo-Salas & Giulia Guarguaglini & Oliver J. Gruss & Alexandra Segref & Eric Karsenti & Iain W. Mattaj, 1999. "Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation," Nature, Nature, vol. 400(6740), pages 178-181, July.
    7. Masahiro Kasahara & Kiyoshi Naruse & Shin Sasaki & Yoichiro Nakatani & Wei Qu & Budrul Ahsan & Tomoyuki Yamada & Yukinobu Nagayasu & Koichiro Doi & Yasuhiro Kasai & Tomoko Jindo & Daisuke Kobayashi & , 2007. "The medaka draft genome and insights into vertebrate genome evolution," Nature, Nature, vol. 447(7145), pages 714-719, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernardo Gouveia & Sagar U. Setru & Matthew R. King & Aaron Hamlin & Howard A. Stone & Joshua W. Shaevitz & Sabine Petry, 2023. "Acentrosomal spindles assemble from branching microtubule nucleation near chromosomes in Xenopus laevis egg extract," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. François Serra & Andrea Nieto-Aliseda & Lucía Fanlo-Escudero & Llorenç Rovirosa & Mónica Cabrera-Pasadas & Aleksey Lazarenkov & Blanca Urmeneta & Alvaro Alcalde-Merino & Emanuele M. Nola & Andrei L. O, 2024. "p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Harsh Nagpal & Ahmad Ali-Ahmad & Yasuhiro Hirano & Wei Cai & Mario Halic & Tatsuo Fukagawa & Nikolina Sekulić & Beat Fierz, 2023. "CENP-A and CENP-B collaborate to create an open centromeric chromatin state," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Daniel P. Bondeson & Zachary Mullin-Bernstein & Sydney Oliver & Thomas A. Skipper & Thomas C. Atack & Nolan Bick & Meilani Ching & Andrew A. Guirguis & Jason Kwon & Carly Langan & Dylan Millson & Bren, 2022. "Systematic profiling of conditional degron tag technologies for target validation studies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Kosuke Yamaguchi & Xiaoying Chen & Brianna Rodgers & Fumihito Miura & Pavel Bashtrykov & Frédéric Bonhomme & Catalina Salinas-Luypaert & Deis Haxholli & Nicole Gutekunst & Bihter Özdemir Aygenli & Lau, 2024. "Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Wenyan Wan & Hui Dong & De-Hua Lai & Jiong Yang & Kai He & Xiaoyan Tang & Qun Liu & Geoff Hide & Xing-Quan Zhu & L. David Sibley & Zhao-Rong Lun & Shaojun Long, 2023. "The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Wei Wu & Szymon A. Barwacz & Rahul Bhowmick & Katrine Lundgaard & Marisa M. Gonçalves Dinis & Malgorzata Clausen & Masato T. Kanemaki & Ying Liu, 2023. "Mitotic DNA synthesis in response to replication stress requires the sequential action of DNA polymerases zeta and delta in human cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Stefan A. Hoffmann & Yizhi Cai, 2024. "Engineering stringent genetic biocontainment of yeast with a protein stability switch," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Zhiqian Li & Lang You & Anita Hermann & Ethan Bier, 2024. "Developmental progression of DNA double-strand break repair deciphered by a single-allele resolution mutation classifier," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Riccardo Calandrelli & Xingzhao Wen & John Lalith Charles Richard & Zhifei Luo & Tri C. Nguyen & Chien-Ju Chen & Zhijie Qi & Shuanghong Xue & Weizhong Chen & Zhangming Yan & Weixin Wu & Kathia Zaleta-, 2023. "Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Dalileh Nabi & Hauke Drechsler & Johannes Pschirer & Franz Korn & Nadine Schuler & Stefan Diez & Rolf Jessberger & Mariola Chacón, 2021. "CENP-V is required for proper chromosome segregation through interaction with spindle microtubules in mouse oocytes," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    12. Vivekanandan Ramalingam & Xinyang Yu & Brian D. Slaughter & Jay R. Unruh & Kaelan J. Brennan & Anastasiia Onyshchenko & Jeffrey J. Lange & Malini Natarajan & Michael Buck & Julia Zeitlinger, 2023. "Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Cheng Zeng & Jiwei Chen & Emmalee W. Cooke & Arijita Subuddhi & Eliana T. Roodman & Fei Xavier Chen & Kaixiang Cao, 2023. "Demethylase-independent roles of LSD1 in regulating enhancers and cell fate transition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Eri Koyanagi & Yoko Kakimoto & Tamiko Minamisawa & Fumiya Yoshifuji & Toyoaki Natsume & Atsushi Higashitani & Tomoo Ogi & Antony M. Carr & Masato T. Kanemaki & Yasukazu Daigaku, 2022. "Global landscape of replicative DNA polymerase usage in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45251-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.