IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41408-1.html
   My bibliography  Save this article

Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development

Author

Listed:
  • Vivekanandan Ramalingam

    (Stowers Institute for Medical Research
    University of Kansas Medical Center­­­­
    Stanford University)

  • Xinyang Yu

    (State University of New York at Buffalo)

  • Brian D. Slaughter

    (Stowers Institute for Medical Research)

  • Jay R. Unruh

    (Stowers Institute for Medical Research)

  • Kaelan J. Brennan

    (Stowers Institute for Medical Research)

  • Anastasiia Onyshchenko

    (Stowers Institute for Medical Research)

  • Jeffrey J. Lange

    (Stowers Institute for Medical Research)

  • Malini Natarajan

    (Stowers Institute for Medical Research)

  • Michael Buck

    (State University of New York at Buffalo
    Jacobs School of Medicine & Biomedical Sciences)

  • Julia Zeitlinger

    (Stowers Institute for Medical Research
    University of Kansas Medical Center­­­­)

Abstract

While the accessibility of enhancers is dynamically regulated during development, promoters tend to be constitutively accessible and poised for activation by paused Pol II. By studying Lola-I, a Drosophila zinc finger transcription factor, we show here that the promoter state can also be subject to developmental regulation independently of gene activation. Lola-I is ubiquitously expressed at the end of embryogenesis and causes its target promoters to become accessible and acquire paused Pol II throughout the embryo. This promoter transition is required but not sufficient for tissue-specific target gene activation. Lola-I mediates this function by depleting promoter nucleosomes, similar to the action of pioneer factors at enhancers. These results uncover a level of regulation for promoters that is normally found at enhancers and reveal a mechanism for the de novo establishment of paused Pol II at promoters.

Suggested Citation

  • Vivekanandan Ramalingam & Xinyang Yu & Brian D. Slaughter & Jay R. Unruh & Kaelan J. Brennan & Anastasiia Onyshchenko & Jeffrey J. Lange & Malini Natarajan & Michael Buck & Julia Zeitlinger, 2023. "Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41408-1
    DOI: 10.1038/s41467-023-41408-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41408-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41408-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yad Ghavi-Helm & Felix A. Klein & Tibor Pakozdi & Lucia Ciglar & Daan Noordermeer & Wolfgang Huber & Eileen E. M. Furlong, 2014. "Enhancer loops appear stable during development and are associated with paused polymerase," Nature, Nature, vol. 512(7512), pages 96-100, August.
    2. Fangjie Zhu & Lucas Farnung & Eevi Kaasinen & Biswajyoti Sahu & Yimeng Yin & Bei Wei & Svetlana O. Dodonova & Kazuhiro R. Nitta & Ekaterina Morgunova & Minna Taipale & Patrick Cramer & Jussi Taipale, 2018. "The interaction landscape between transcription factors and the nucleosome," Nature, Nature, vol. 562(7725), pages 76-81, October.
    3. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    4. Saskia Gressel & Björn Schwalb & Patrick Cramer, 2019. "The pause-initiation limit restricts transcription activation in human cells," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Virginia L. Pimmett & Matthieu Dejean & Carola Fernandez & Antonio Trullo & Edouard Bertrand & Ovidiu Radulescu & Mounia Lagha, 2021. "Quantitative imaging of transcription in living Drosophila embryos reveals the impact of core promoter motifs on promoter state dynamics," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    6. Noam Kaplan & Irene K. Moore & Yvonne Fondufe-Mittendorf & Andrea J. Gossett & Desiree Tillo & Yair Field & Emily M. LeProust & Timothy R. Hughes & Jason D. Lieb & Jonathan Widom & Eran Segal, 2009. "The DNA-encoded nucleosome organization of a eukaryotic genome," Nature, Nature, vol. 458(7236), pages 362-366, March.
    7. Ravindra D. Makde & Joseph R. England & Hemant P. Yennawar & Song Tan, 2010. "Structure of RCC1 chromatin factor bound to the nucleosome core particle," Nature, Nature, vol. 467(7315), pages 562-566, September.
    8. Robert E. Thurman & Eric Rynes & Richard Humbert & Jeff Vierstra & Matthew T. Maurano & Eric Haugen & Nathan C. Sheffield & Andrew B. Stergachis & Hao Wang & Benjamin Vernot & Kavita Garg & Sam John &, 2012. "The accessible chromatin landscape of the human genome," Nature, Nature, vol. 489(7414), pages 75-82, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyao Wang & Shihe Zhang & Hongfang Lu & Heng Xu, 2022. "Differential regulation of alternative promoters emerges from unified kinetics of enhancer-promoter interaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    3. Liang-Yu Fu & Tao Zhu & Xinkai Zhou & Ranran Yu & Zhaohui He & Peijing Zhang & Zhigui Wu & Ming Chen & Kerstin Kaufmann & Dijun Chen, 2022. "ChIP-Hub provides an integrative platform for exploring plant regulome," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Amy L. Hughes & Aleksander T. Szczurek & Jessica R. Kelley & Anna Lastuvkova & Anne H. Turberfield & Emilia Dimitrova & Neil P. Blackledge & Robert J. Klose, 2023. "A CpG island-encoded mechanism protects genes from premature transcription termination," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Alistair N Boettiger & Peter L Ralph & Steven N Evans, 2011. "Transcriptional Regulation: Effects of Promoter Proximal Pausing on Speed, Synchrony and Reliability," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    6. Matthieu Wyart & David Botstein & Ned S Wingreen, 2010. "Evaluating Gene Expression Dynamics Using Pairwise RNA FISH Data," PLOS Computational Biology, Public Library of Science, vol. 6(11), pages 1-14, November.
    7. Xuelong Yao & Zongyang Lu & Zhanying Feng & Lei Gao & Xin Zhou & Min Li & Suijuan Zhong & Qian Wu & Zhenbo Liu & Haofeng Zhang & Zeyuan Liu & Lizhi Yi & Tao Zhou & Xudong Zhao & Jun Zhang & Yong Wang , 2022. "Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Kate E. Stanley & Tatjana Jatsenko & Stefania Tuveri & Dhanya Sudhakaran & Lore Lannoo & Kristel Calsteren & Marie Borre & Ilse Parijs & Leen Coillie & Kris Bogaert & Rodrigo Almeida Toledo & Liesbeth, 2024. "Cell type signatures in cell-free DNA fragmentation profiles reveal disease biology," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Michaël Noë & Dimitrios Mathios & Akshaya V. Annapragada & Shashikant Koul & Zacharia H. Foda & Jamie E. Medina & Stephen Cristiano & Christopher Cherry & Daniel C. Bruhm & Noushin Niknafs & Vilmos Ad, 2024. "DNA methylation and gene expression as determinants of genome-wide cell-free DNA fragmentation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Qiwen Sun & Zhaohang Cai & Chunjuan Zhu, 2022. "A Novel Dynamical Regulation of mRNA Distribution by Cross-Talking Pathways," Mathematics, MDPI, vol. 10(9), pages 1-14, May.
    11. Stuart Aitken & Marie-Cécile Robert & Ross D Alexander & Igor Goryanin & Edouard Bertrand & Jean D Beggs, 2010. "Processivity and Coupling in Messenger RNA Transcription," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-12, January.
    12. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.
    13. Dahong Chen & Catherine E. McManus & Behram Radmanesh & Leah H. Matzat & Elissa P. Lei, 2021. "Temporal inhibition of chromatin looping and enhancer accessibility during neuronal remodeling," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Muir Morrison & Manuel Razo-Mejia & Rob Phillips, 2021. "Reconciling kinetic and thermodynamic models of bacterial transcription," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-30, January.
    15. Wolfram Möbius & Ulrich Gerland, 2010. "Quantitative Test of the Barrier Nucleosome Model for Statistical Positioning of Nucleosomes Up- and Downstream of Transcription Start Sites," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-11, August.
    16. Tianbao Li & Qi Liu & Zhong Chen & Kun Fang & Furong Huang & Xueqi Fu & Qianben Wang & Victor X. Jin, 2022. "Dynamic nucleosome landscape elicits a noncanonical GATA2 pioneer model," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Pakavarin Louphrasitthiphol & Alessia Loffreda & Vivian Pogenberg & Sarah Picaud & Alexander Schepsky & Hans Friedrichsen & Zhiqiang Zeng & Anahita Lashgari & Benjamin Thomas & E. Elizabeth Patton & M, 2023. "Acetylation reprograms MITF target selectivity and residence time," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Elijah Roberts & Andrew Magis & Julio O Ortiz & Wolfgang Baumeister & Zaida Luthey-Schulten, 2011. "Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-21, March.
    19. Ross D. Jones & Yili Qian & Katherine Ilia & Benjamin Wang & Michael T. Laub & Domitilla Del Vecchio & Ron Weiss, 2022. "Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Xinyu Hu & Bob van Sluijs & Óscar García-Blay & Yury Stepanov & Koen Rietrae & Wilhelm T. S. Huck & Maike M. K. Hansen, 2024. "ARTseq-FISH reveals position-dependent differences in gene expression of micropatterned mESCs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41408-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.