IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42274-7.html
   My bibliography  Save this article

Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells

Author

Listed:
  • Riccardo Calandrelli

    (University of California San Diego)

  • Xingzhao Wen

    (University of California San Diego)

  • John Lalith Charles Richard

    (University of California San Diego)

  • Zhifei Luo

    (University of California San Diego)

  • Tri C. Nguyen

    (University of California San Diego)

  • Chien-Ju Chen

    (University of California San Diego)

  • Zhijie Qi

    (University of California San Diego)

  • Shuanghong Xue

    (University of California San Diego)

  • Weizhong Chen

    (University of California San Diego)

  • Zhangming Yan

    (University of California San Diego)

  • Weixin Wu

    (University of California San Diego)

  • Kathia Zaleta-Rivera

    (University of California San Diego)

  • Rong Hu

    (University of California San Diego
    Ludwig Institute for Cancer Research)

  • Miao Yu

    (Ludwig Institute for Cancer Research)

  • Yuchuan Wang

    (Carnegie Mellon University)

  • Wenbo Li

    (University of Texas Health Science Center)

  • Jian Ma

    (Carnegie Mellon University)

  • Bing Ren

    (University of California San Diego
    Ludwig Institute for Cancer Research)

  • Sheng Zhong

    (University of California San Diego)

Abstract

The interphase genome is dynamically organized in the nucleus and decorated with chromatin-associated RNA (caRNA). It remains unclear whether the genome architecture modulates the spatial distribution of caRNA and vice versa. Here, we generate a resource of genome-wide RNA-DNA and DNA-DNA contact maps in human cells. These maps reveal the chromosomal domains demarcated by locally transcribed RNA, hereafter termed RNA-defined chromosomal domains. Further, the spreading of caRNA is constrained by the boundaries of topologically associating domains (TADs), demonstrating the role of the 3D genome structure in modulating the spatial distribution of RNA. Conversely, stopping transcription or acute depletion of RNA induces thousands of chromatin loops genome-wide. Activation or suppression of the transcription of specific genes suppresses or creates chromatin loops straddling these genes. Deletion of a specific caRNA-producing genomic sequence promotes chromatin loops that straddle the interchromosomal target sequences of this caRNA. These data suggest a feedback loop where the 3D genome modulates the spatial distribution of RNA, which in turn affects the dynamic 3D genome organization.

Suggested Citation

  • Riccardo Calandrelli & Xingzhao Wen & John Lalith Charles Richard & Zhifei Luo & Tri C. Nguyen & Chien-Ju Chen & Zhijie Qi & Shuanghong Xue & Weizhong Chen & Zhangming Yan & Weixin Wu & Kathia Zaleta-, 2023. "Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42274-7
    DOI: 10.1038/s41467-023-42274-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42274-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42274-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Riccardo Calandrelli & Lixia Xu & Yingjun Luo & Weixin Wu & Xiaochen Fan & Tri Nguyen & Chien-Ju Chen & Kiran Sriram & Xiaofang Tang & Andrew B. Burns & Rama Natarajan & Zhen Bouman Chen & Sheng Zhong, 2020. "Stress-induced RNA–chromatin interactions promote endothelial dysfunction," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Job Dekker & Andrew S. Belmont & Mitchell Guttman & Victor O. Leshyk & John T. Lis & Stavros Lomvardas & Leonid A. Mirny & Clodagh C. O’Shea & Peter J. Park & Bing Ren & Joan C. Ritland Politz & Jay S, 2017. "The 4D nucleome project," Nature, Nature, vol. 549(7671), pages 219-226, September.
    3. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    4. Ankur Jain & Ronald D. Vale, 2017. "RNA phase transitions in repeat expansion disorders," Nature, Nature, vol. 546(7657), pages 243-247, June.
    5. Aisha Yesbolatova & Yuichiro Saito & Naomi Kitamoto & Hatsune Makino-Itou & Rieko Ajima & Risako Nakano & Hirofumi Nakaoka & Kosuke Fukui & Kanae Gamo & Yusuke Tominari & Haruki Takeuchi & Yumiko Saga, 2020. "The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    6. Yafei Yin & J. Yuyang Lu & Xuechun Zhang & Wen Shao & Yanhui Xu & Pan Li & Yantao Hong & Li Cui & Ge Shan & Bin Tian & Qiangfeng Cliff Zhang & Xiaohua Shen, 2020. "U1 snRNP regulates chromatin retention of noncoding RNAs," Nature, Nature, vol. 580(7801), pages 147-150, April.
    7. Job Dekker & Andrew S. Belmont & Mitchell Guttman & Victor O. Leshyk & John T. Lis & Stavros Lomvardas & Leonid A. Mirny & Clodagh C. O’Shea & Peter J. Park & Bing Ren & Joan C. Ritland Politz & Jay S, 2017. "Correction: Corrigendum: The 4D nucleome project," Nature, Nature, vol. 552(7684), pages 278-278, December.
    8. Elphège P. Nora & Bryan R. Lajoie & Edda G. Schulz & Luca Giorgetti & Ikuhiro Okamoto & Nicolas Servant & Tristan Piolot & Nynke L. van Berkum & Johannes Meisig & John Sedat & Joost Gribnau & Emmanuel, 2012. "Spatial partitioning of the regulatory landscape of the X-inactivation centre," Nature, Nature, vol. 485(7398), pages 381-385, May.
    9. Liang Liang & Changchang Cao & Lei Ji & Zhaokui Cai & Di Wang & Rong Ye & Juan Chen & Xiaohua Yu & Jie Zhou & Zhibo Bai & Ruoyan Wang & Xianguang Yang & Ping Zhu & Yuanchao Xue, 2023. "Publisher Correction: Complementary Alu sequences mediate enhancer–promoter selectivity," Nature, Nature, vol. 620(7975), pages 26-26, August.
    10. Yifei Miao & Nassim E. Ajami & Tse-Shun Huang & Feng-Mao Lin & Chih-Hong Lou & Yun-Ting Wang & Shuai Li & Jian Kang & Hannah Munkacsi & Mano R. Maurya & Shakti Gupta & Shu Chien & Shankar Subramaniam , 2018. "Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    11. Emily Crane & Qian Bian & Rachel Patton McCord & Bryan R. Lajoie & Bayly S. Wheeler & Edward J. Ralston & Satoru Uzawa & Job Dekker & Barbara J. Meyer, 2015. "Condensin-driven remodelling of X chromosome topology during dosage compensation," Nature, Nature, vol. 523(7559), pages 240-244, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah B. Reiff & Andrew J. Schroeder & Koray Kırlı & Andrea Cosolo & Clara Bakker & Luisa Mercado & Soohyun Lee & Alexander D. Veit & Alexander K. Balashov & Carl Vitzthum & William Ronchetti & Kent M, 2022. "The 4D Nucleome Data Portal as a resource for searching and visualizing curated nucleomics data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Wu Zuo & Guangming Chen & Zhimei Gao & Shuai Li & Yanyan Chen & Chenhui Huang & Juan Chen & Zhengjun Chen & Ming Lei & Qian Bian, 2021. "Stage-resolved Hi-C analyses reveal meiotic chromosome organizational features influencing homolog alignment," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    3. Mayank N. K. Choudhary & Kara Quaid & Xiaoyun Xing & Heather Schmidt & Ting Wang, 2023. "Widespread contribution of transposable elements to the rewiring of mammalian 3D genomes," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Olivier Messina & Flavien Raynal & Julian Gurgo & Jean-Bernard Fiche & Vera Pancaldi & Marcelo Nollmann, 2023. "3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Bobae Yang & Sueun Kim & Woong-Jae Jung & Kyungwoo Kim & Sugyung Kim & Yong-Jin Kim & Tae-Gyun Kim & Eun-Chong Lee & Jung-Sik Joo & Chae Gyu Park & Sumin Oh & Kyung Hyun Yoo & Hyoung-Pyo Kim, 2023. "CTCF controls three-dimensional enhancer network underlying the inflammatory response of bone marrow-derived dendritic cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Li-Hsin Chang & Sourav Ghosh & Andrea Papale & Jennifer M. Luppino & Mélanie Miranda & Vincent Piras & Jéril Degrouard & Joanne Edouard & Mallory Poncelet & Nathan Lecouvreur & Sébastien Bloyer & Amél, 2023. "Multi-feature clustering of CTCF binding creates robustness for loop extrusion blocking and Topologically Associating Domain boundaries," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Lina Zheng & Wei Wang, 2022. "Regulation associated modules reflect 3D genome modularity associated with chromatin activity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Haowen Zhang & Li Song & Xiaotao Wang & Haoyu Cheng & Chenfei Wang & Clifford A. Meyer & Tao Liu & Ming Tang & Srinivas Aluru & Feng Yue & X. Shirley Liu & Heng Li, 2021. "Fast alignment and preprocessing of chromatin profiles with Chromap," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    10. Mariam Okhovat & Jake VanCampen & Kimberly A. Nevonen & Lana Harshman & Weiyu Li & Cora E. Layman & Samantha Ward & Jarod Herrera & Jackson Wells & Rory R. Sheng & Yafei Mao & Blaise Ndjamen & Ana C. , 2023. "TAD evolutionary and functional characterization reveals diversity in mammalian TAD boundary properties and function," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Xiao Ge & Haiyan Huang & Keqi Han & Wangjie Xu & Zhaoxia Wang & Qiang Wu, 2023. "Outward-oriented sites within clustered CTCF boundaries are key for intra-TAD chromatin interactions and gene regulation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Alon Diament & Tamir Tuller, 2015. "Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-22, May.
    15. Jorine M. Eeftens & Manya Kapoor & Davide Michieletto & Clifford P. Brangwynne, 2021. "Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    16. Julia Minderjahn & Alexander Fischer & Konstantin Maier & Karina Mendes & Margit Nuetzel & Johanna Raithel & Hanna Stanewsky & Ute Ackermann & Robert Månsson & Claudia Gebhard & Michael Rehli, 2022. "Postmitotic differentiation of human monocytes requires cohesin-structured chromatin," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Mingsen Li & Huaxing Huang & Bofeng Wang & Shaoshuai Jiang & Huizhen Guo & Liqiong Zhu & Siqi Wu & Jiafeng Liu & Li Wang & Xihong Lan & Wang Zhang & Jin Zhu & Fuxi Li & Jieying Tan & Zhen Mao & Chunqi, 2022. "Comprehensive 3D epigenomic maps define limbal stem/progenitor cell function and identity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Bob Zimmermann & Juan D. Montenegro & Sofia M. C. Robb & Whitney J. Fropf & Lukas Weilguny & Shuonan He & Shiyuan Chen & Jessica Lovegrove-Walsh & Eric M. Hill & Cheng-Yi Chen & Katerina Ragkousi & Da, 2023. "Topological structures and syntenic conservation in sea anemone genomes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. François Serra & Andrea Nieto-Aliseda & Lucía Fanlo-Escudero & Llorenç Rovirosa & Mónica Cabrera-Pasadas & Aleksey Lazarenkov & Blanca Urmeneta & Alvaro Alcalde-Merino & Emanuele M. Nola & Andrei L. O, 2024. "p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    20. Jacques Serizay & Cyril Matthey-Doret & Amaury Bignaud & Lyam Baudry & Romain Koszul, 2024. "Orchestrating chromosome conformation capture analysis with Bioconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42274-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.