IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45234-x.html
   My bibliography  Save this article

Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films

Author

Listed:
  • Minyoung Lee

    (Seoul National University
    Institute of Basic Science (IBS))

  • Sang Yup Lee

    (Korea University
    Korea University
    Korea University)

  • Min-Ho Kang

    (The Catholic University of Korea
    The Catholic University of Korea)

  • Tae Kyung Won

    (Korea University
    Korea University)

  • Sungsu Kang

    (Seoul National University
    Institute of Basic Science (IBS))

  • Joodeok Kim

    (Seoul National University
    Institute of Basic Science (IBS))

  • Jungwon Park

    (Seoul National University
    Institute of Basic Science (IBS)
    Seoul National University
    Seoul National University)

  • Dong June Ahn

    (Korea University
    Korea University
    Korea University)

Abstract

Ice crystals at low temperatures exhibit structural polymorphs including hexagonal ice, cubic ice, or a hetero-crystalline mixture of the two phases. Despite the significant implications of structure-dependent roles of ice, mechanisms behind the growths of each polymorph have been difficult to access quantitatively. Using in-situ cryo-electron microscopy and computational ice-dynamics simulations, we directly observe crystalline ice growth in an amorphous ice film of nanoscale thickness, which exhibits three-dimensional ice nucleation and subsequent two-dimensional ice growth. We reveal that nanoscale ice crystals exhibit polymorph-dependent growth kinetics, while hetero-crystalline ice exhibits anisotropic growth, with accelerated growth occurring at the prismatic planes. Fast-growing facets are associated with low-density interfaces that possess higher surface energy, driving tetrahedral ordering of interfacial H2O molecules and accelerating ice growth. These findings, based on nanoscale observations, improve our understanding on early stages of ice formation and mechanistic roles of the ice interface.

Suggested Citation

  • Minyoung Lee & Sang Yup Lee & Min-Ho Kang & Tae Kyung Won & Sungsu Kang & Joodeok Kim & Jungwon Park & Dong June Ahn, 2024. "Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45234-x
    DOI: 10.1038/s41467-024-45234-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45234-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45234-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura Lupi & Arpa Hudait & Baron Peters & Michael Grünwald & Ryan Gotchy Mullen & Andrew H. Nguyen & Valeria Molinero, 2017. "Role of stacking disorder in ice nucleation," Nature, Nature, vol. 551(7679), pages 218-222, November.
    2. Guoying Bai & Dong Gao & Zhang Liu & Xin Zhou & Jianjun Wang, 2019. "Probing the critical nucleus size for ice formation with graphene oxide nanosheets," Nature, Nature, vol. 576(7787), pages 437-441, December.
    3. Sang Yup Lee & Minseong Kim & Tae Kyung Won & Seung Hyuk Back & Youngjoo Hong & Byeong-Su Kim & Dong June Ahn, 2022. "Janus regulation of ice growth by hyperbranched polyglycerols generating dynamic hydrogen bonding," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Xudan Huang & Lifen Wang & Keyang Liu & Lei Liao & Huacong Sun & Jianlin Wang & Xuezeng Tian & Zhi Xu & Wenlong Wang & Lei Liu & Ying Jiang & Ji Chen & Enge Wang & Xuedong Bai, 2023. "Tracking cubic ice at molecular resolution," Nature, Nature, vol. 617(7959), pages 86-91, May.
    5. Kazuki Komatsu & Shinichi Machida & Fumiya Noritake & Takanori Hattori & Asami Sano-Furukawa & Ryo Yamane & Keishiro Yamashita & Hiroyuki Kagi, 2020. "Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate," Nature Communications, Nature, vol. 11(1), pages 1-5, December.
    6. Runze Ma & Duanyun Cao & Chongqin Zhu & Ye Tian & Jinbo Peng & Jing Guo & Ji Chen & Xin-Zheng Li & Joseph S. Francisco & Xiao Cheng Zeng & Li-Mei Xu & En-Ge Wang & Ying Jiang, 2020. "Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice," Nature, Nature, vol. 577(7788), pages 60-63, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Li & Nifang Zhao & Anran Mao & Mengning Wang & Ziyu Shao & Weiwei Gao & Hao Bai, 2023. "Preferential ice growth on grooved surface for crisscross-aligned graphene aerogel with large negative Poisson’s ratio," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Pengcheng Chen & Qiuhao Xu & Zijing Ding & Qing Chen & Jiyu Xu & Zhihai Cheng & Xiaohui Qiu & Bingkai Yuan & Sheng Meng & Nan Yao, 2023. "Identification of a common ice nucleus on hydrophilic and hydrophobic close-packed metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Fuqiang Chu & Shuxin Li & Canjun Zhao & Yanhui Feng & Yukai Lin & Xiaomin Wu & Xiao Yan & Nenad Miljkovic, 2024. "Interfacial ice sprouting during salty water droplet freezing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Seyeong Cha & Giyeok Lee & Sol Lee & Sae Hee Ryu & Yeongsup Sohn & Gijeong An & Changmo Kang & Minsu Kim & Kwanpyo Kim & Aloysius Soon & Keun Su Kim, 2023. "Order-disorder phase transition driven by interlayer sliding in lead iodides," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Felix Kohler & Olivier Pierre-Louis & Dag Kristian Dysthe, 2022. "Crystal growth in confinement," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    11. Sang Yup Lee & Minseong Kim & Tae Kyung Won & Seung Hyuk Back & Youngjoo Hong & Byeong-Su Kim & Dong June Ahn, 2022. "Janus regulation of ice growth by hyperbranched polyglycerols generating dynamic hydrogen bonding," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Conghui Tian & Lingxiao Shen & Chenjia Gong & Yunxia Cao & Qinghua Shi & Gang Zhao, 2022. "Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45234-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.