IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34330-5.html
   My bibliography  Save this article

Crystal growth in confinement

Author

Listed:
  • Felix Kohler

    (University of Oslo
    Expert Analytics)

  • Olivier Pierre-Louis

    (Université de Lyon, Université Claude Bernard Lyon 1, CNRS)

  • Dag Kristian Dysthe

    (University of Oslo)

Abstract

The growth of crystals confined in porous or cellular materials is ubiquitous in Nature and forms the basis of many industrial processes. Confinement affects the formation of biominerals in living organisms, of minerals in the Earth’s crust and of salt crystals damaging porous limestone monuments, and is also used to control the growth of artificial crystals. However, the mechanisms by which confinement alters crystal shapes and growth rates are still not elucidated. Based on novel in situ optical observations of (001) surfaces of NaClO3 and CaCO3 crystals at nanometric distances from a glass substrate, we demonstrate that new molecular layers can nucleate homogeneously and propagate without interruption even when in contact with other solids, raising the macroscopic crystal above them. Confined growth is governed by the peculiar dynamics of these molecular layers controlled by the two-dimensional transport of mass through the liquid film from the edges to the center of the contact, with distinctive features such as skewed dislocation spirals, kinetic localization of nucleation in the vicinity of the contact edge, and directed instabilities. Confined growth morphologies can be predicted from the values of three main dimensionless parameters.

Suggested Citation

  • Felix Kohler & Olivier Pierre-Louis & Dag Kristian Dysthe, 2022. "Crystal growth in confinement," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34330-5
    DOI: 10.1038/s41467-022-34330-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34330-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34330-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Runze Ma & Duanyun Cao & Chongqin Zhu & Ye Tian & Jinbo Peng & Jing Guo & Ji Chen & Xin-Zheng Li & Joseph S. Francisco & Xiao Cheng Zeng & Li-Mei Xu & En-Ge Wang & Ying Jiang, 2020. "Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice," Nature, Nature, vol. 577(7788), pages 60-63, January.
    2. Jose C. Contreras-Naranjo & Victor M. Ugaz, 2013. "A nanometre-scale resolution interference-based probe of interfacial phenomena between microscopic objects and surfaces," Nature Communications, Nature, vol. 4(1), pages 1-9, October.
    3. G. Algara-Siller & O. Lehtinen & F. C. Wang & R. R. Nair & U. Kaiser & H. A. Wu & A. K. Geim & I. V. Grigorieva, 2015. "Square ice in graphene nanocapillaries," Nature, Nature, vol. 519(7544), pages 443-445, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Lin & Jian Jiang & Xiao Cheng Zeng & Lei Li, 2023. "Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Pengcheng Chen & Qiuhao Xu & Zijing Ding & Qing Chen & Jiyu Xu & Zhihai Cheng & Xiaohui Qiu & Bingkai Yuan & Sheng Meng & Nan Yao, 2023. "Identification of a common ice nucleus on hydrophilic and hydrophobic close-packed metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Tomohito Sudare & Takuro Yamaguchi & Mizuki Ueda & Hiromasa Shiiba & Hideki Tanaka & Mongkol Tipplook & Fumitaka Hayashi & Katsuya Teshima, 2022. "Critical role of water structure around interlayer ions for ion storage in layered double hydroxides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Hao-Ting Chin & Jiri Klimes & I-Fan Hu & Ding-Rui Chen & Hai-Thai Nguyen & Ting-Wei Chen & Shao-Wei Ma & Mario Hofmann & Chi-Te Liang & Ya-Ping Hsieh, 2021. "Ferroelectric 2D ice under graphene confinement," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    6. Ye Tian & Botao Huang & Yizhi Song & Yirui Zhang & Dong Guan & Jiani Hong & Duanyun Cao & Enge Wang & Limei Xu & Yang Shao-Horn & Ying Jiang, 2024. "Effect of ion-specific water structures at metal surfaces on hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Mailis Lounasvuori & Yangyunli Sun & Tyler S. Mathis & Ljiljana Puskar & Ulrich Schade & De-En Jiang & Yury Gogotsi & Tristan Petit, 2023. "Vibrational signature of hydrated protons confined in MXene interlayers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Pavan Ravindra & Xavier R. Advincula & Christoph Schran & Angelos Michaelides & Venkat Kapil, 2024. "Quasi-one-dimensional hydrogen bonding in nanoconfined ice," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Tong, Xuan & Li, Nianqi & Zeng, Min & Wang, Qiuwang, 2019. "Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 398-422.
    10. Xin Yu & Wencai Ren, 2023. "2D CdPS3-based versatile superionic conductors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Ng, Ving Onn & Hong, XiangYu & Yu, Hao & Wu, HengAn & Hung, Yew Mun, 2022. "Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures," Applied Energy, Elsevier, vol. 326(C).
    12. Minyoung Lee & Sang Yup Lee & Min-Ho Kang & Tae Kyung Won & Sungsu Kang & Joodeok Kim & Jungwon Park & Dong June Ahn, 2024. "Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Gang Sun & Hajime Tanaka, 2024. "Surface-induced water crystallisation driven by precursors formed in negative pressure regions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Ruijian Zhu & Yanting Wang, 2024. "A critical edge number revealed for phase stabilities of two-dimensional ball-stick polygons," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Nawapong Unsuree & Sorasak Phanphak & Pongthep Prajongtat & Aritsa Bunpheng & Kulpavee Jitapunkul & Pornpis Kongputhon & Pannaree Srinoi & Pawin Iamprasertkun & Wisit Hirunpinyopas, 2021. "A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives," Energies, MDPI, vol. 14(18), pages 1-38, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34330-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.