IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52131-w.html
   My bibliography  Save this article

Effect of ion-specific water structures at metal surfaces on hydrogen production

Author

Listed:
  • Ye Tian

    (School of Physics)

  • Botao Huang

    (77 Massachusetts Avenue
    77 Massachusetts Avenue)

  • Yizhi Song

    (School of Physics
    Temple University)

  • Yirui Zhang

    (77 Massachusetts Avenue)

  • Dong Guan

    (School of Physics)

  • Jiani Hong

    (School of Physics)

  • Duanyun Cao

    (School of Physics)

  • Enge Wang

    (School of Physics
    Collaborative Innovation Center of Quantum Matter
    Liaoning University
    Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials)

  • Limei Xu

    (School of Physics
    Collaborative Innovation Center of Quantum Matter
    Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials)

  • Yang Shao-Horn

    (77 Massachusetts Avenue
    77 Massachusetts Avenue
    77 Massachusetts Avenue)

  • Ying Jiang

    (School of Physics
    Collaborative Innovation Center of Quantum Matter
    Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials)

Abstract

Water structures at electrolyte/electrode interfaces play a crucial role in determining the selectivity and kinetics of electrochemical reactions. Despite extensive experimental and theoretical efforts, atomic-level details of ion-specific water structures on metal surfaces remain unclear. Here we show, using scanning tunneling microscopy and noncontact atomic force microscopy, that we can visualize water layers containing alkali metal cations on a charged Au(111) surface with atomic resolution. Our results reveal that Li+ cations are elevated from the surface, facilitating the formation of an ice-like water layer between the Li+ cations and the surface. In contrast, K+ and Cs+ cations are in direct contact with the surface. We observe that the water network structure transitions from a hexagonal arrangement with Li+ to a distorted hydrogen-bonding configuration with Cs+. These observations are consistent with surface-enhanced infrared absorption spectroscopy data and suggest that alkali metal cations significantly impact hydrogen evolution reaction kinetics and efficiency. Our findings provide insights into ion-specific water structures on metal surfaces and underscore the critical role of spectator ions in electrochemical processes.

Suggested Citation

  • Ye Tian & Botao Huang & Yizhi Song & Yirui Zhang & Dong Guan & Jiani Hong & Duanyun Cao & Enge Wang & Limei Xu & Yang Shao-Horn & Ying Jiang, 2024. "Effect of ion-specific water structures at metal surfaces on hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52131-w
    DOI: 10.1038/s41467-024-52131-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52131-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52131-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Runze Ma & Duanyun Cao & Chongqin Zhu & Ye Tian & Jinbo Peng & Jing Guo & Ji Chen & Xin-Zheng Li & Joseph S. Francisco & Xiao Cheng Zeng & Li-Mei Xu & En-Ge Wang & Ying Jiang, 2020. "Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice," Nature, Nature, vol. 577(7788), pages 60-63, January.
    2. Akitoshi Shiotari & Yoshiaki Sugimoto, 2017. "Ultrahigh-resolution imaging of water networks by atomic force microscopy," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. Jinbo Peng & Duanyun Cao & Zhili He & Jing Guo & Prokop Hapala & Runze Ma & Bowei Cheng & Ji Chen & Wen Jun Xie & Xin-Zheng Li & Pavel Jelínek & Li-Mei Xu & Yi Qin Gao & En-Ge Wang & Ying Jiang, 2018. "Publisher Correction: The effect of hydration number on the interfacial transport of sodium ions," Nature, Nature, vol. 563(7729), pages 18-18, November.
    4. Stefan Ringe & Carlos G. Morales-Guio & Leanne D. Chen & Meredith Fields & Thomas F. Jaramillo & Christopher Hahn & Karen Chan, 2020. "Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Yao-Hui Wang & Shisheng Zheng & Wei-Min Yang & Ru-Yu Zhou & Quan-Feng He & Petar Radjenovic & Jin-Chao Dong & Shunning Li & Jiaxin Zheng & Zhi-Lin Yang & Gary Attard & Feng Pan & Zhong-Qun Tian & Jian, 2021. "In situ Raman spectroscopy reveals the structure and dissociation of interfacial water," Nature, Nature, vol. 600(7887), pages 81-85, December.
    6. Min Liu & Yuanjie Pang & Bo Zhang & Phil De Luna & Oleksandr Voznyy & Jixian Xu & Xueli Zheng & Cao Thang Dinh & Fengjia Fan & Changhong Cao & F. Pelayo García de Arquer & Tina Saberi Safaei & Adam Me, 2016. "Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration," Nature, Nature, vol. 537(7620), pages 382-386, September.
    7. Isis Ledezma-Yanez & W. David Z. Wallace & Paula Sebastián-Pascual & Victor Climent & Juan M. Feliu & Marc T. M. Koper, 2017. "Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes," Nature Energy, Nature, vol. 2(4), pages 1-7, April.
    8. Jinbo Peng & Duanyun Cao & Zhili He & Jing Guo & Prokop Hapala & Runze Ma & Bowei Cheng & Ji Chen & Wen Jun Xie & Xin-Zheng Li & Pavel Jelínek & Li-Mei Xu & Yi Qin Gao & En-Ge Wang & Ying Jiang, 2018. "The effect of hydration number on the interfacial transport of sodium ions," Nature, Nature, vol. 557(7707), pages 701-705, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixin Yang & Yanming Cai & Yongbing Qi & Zhuodong Tang & Jun-Jie Zhu & Jinxiang Li & Wenlei Zhu & Zixuan Chen, 2024. "How local electric field regulates C–C coupling at a single nanocavity in electrocatalytic CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Pengcheng Chen & Qiuhao Xu & Zijing Ding & Qing Chen & Jiyu Xu & Zhihai Cheng & Xiaohui Qiu & Bingkai Yuan & Sheng Meng & Nan Yao, 2023. "Identification of a common ice nucleus on hydrophilic and hydrophobic close-packed metal surfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Zhang, Yujiao & Niu, Shengli & Xia, Sunwen & Liu, Sitong & Liu, Jisen, 2023. "One-step conversion of acidified oil to biodiesel by novel bifunctional SrZr1-xFexO3 catalyst," Renewable Energy, Elsevier, vol. 217(C).
    4. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Chao-Yu Li & Ming Chen & Shuai Liu & Xinyao Lu & Jinhui Meng & Jiawei Yan & Héctor D. Abruña & Guang Feng & Tianquan Lian, 2022. "Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Rui Shi & Anthony J. Cooper & Hajime Tanaka, 2023. "Impact of hierarchical water dipole orderings on the dynamics of aqueous salt solutions," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xianxian Qin & Jiejie Li & Tian-Wen Jiang & Xian-Yin Ma & Kun Jiang & Bo Yang & Shengli Chen & Wen-Bin Cai, 2024. "Disentangling heterogeneous thermocatalytic formic acid dehydrogenation from an electrochemical perspective," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Stefan Ringe, 2023. "The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Chunyi Zhang & Shuwen Yue & Athanassios Z. Panagiotopoulos & Michael L. Klein & Xifan Wu, 2022. "Dissolving salt is not equivalent to applying a pressure on water," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. Kejian Kong & An-Zhen Li & Ye Wang & Qiujin Shi & Jing Li & Kaiyue Ji & Haohong Duan, 2023. "Electrochemical carbon–carbon coupling with enhanced activity and racemate stereoselectivity by microenvironment regulation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Tao Zhang & Qitong Ye & Zengyu Han & Qingyi Liu & Yipu Liu & Dongshuang Wu & Hong Jin Fan, 2024. "Biaxial strain induced OH engineer for accelerating alkaline hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Kai Liu & Hao Yang & Yilan Jiang & Zhaojun Liu & Shumeng Zhang & Zhixue Zhang & Zhun Qiao & Yiming Lu & Tao Cheng & Osamu Terasaki & Qing Zhang & Chuanbo Gao, 2023. "Coherent hexagonal platinum skin on nickel nanocrystals for enhanced hydrogen evolution activity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Seung-Jae Shin & Hansol Choi & Stefan Ringe & Da Hye Won & Hyung-Suk Oh & Dong Hyun Kim & Taemin Lee & Dae-Hyun Nam & Hyungjun Kim & Chang Hyuck Choi, 2022. "A unifying mechanism for cation effect modulating C1 and C2 productions from CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Yicui Kang & Simão M. João & Rui Lin & Kang Liu & Li Zhu & Junwei Fu & Weng-Chon (Max) Cheong & Seunghoon Lee & Kilian Frank & Bert Nickel & Min Liu & Johannes Lischner & Emiliano Cortés, 2024. "Effect of crystal facets in plasmonic catalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Jiaxi Zhang & Longhai Zhang & Jiamin Liu & Chengzhi Zhong & Yuanhua Tu & Peng Li & Li Du & Shengli Chen & Zhiming Cui, 2022. "OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Zhihe Liu & Hua Tan & Bo Li & Zehua Hu & De-en Jiang & Qiaofeng Yao & Lei Wang & Jianping Xie, 2023. "Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Jie Xu & Xiong-Xiong Xue & Gonglei Shao & Changfei Jing & Sheng Dai & Kun He & Peipei Jia & Shun Wang & Yifei Yuan & Jun Luo & Jun Lu, 2023. "Atomic-level polarization in electric fields of defects for electrocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52131-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.