IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-55993-w.html
   My bibliography  Save this article

Gypsum heterogenous nucleation pathways regulated by surface functional groups and hydrophobicity

Author

Listed:
  • Yan-Fang Guan

    (University of Science & Technology of China)

  • Xiang-Yu Hong

    (University of Science and Technology of China)

  • Vasiliki Karanikola

    (University of Arizona)

  • Zhangxin Wang

    (Guangzhou)

  • Weiyi Pan

    (Rice University)

  • Heng-An Wu

    (University of Science and Technology of China)

  • Feng-Chao Wang

    (University of Science and Technology of China)

  • Han-Qing Yu

    (University of Science & Technology of China)

  • Menachem Elimelech

    (Rice University)

Abstract

Gypsum (CaSO4·2H2O) plays a critical role in numerous natural and industrial processes. Nevertheless, the underlying mechanisms governing the formation of gypsum crystals on surfaces with diverse chemical properties remain poorly understood due to a lack of sufficient temporal-spatial resolution. Herein, we use in situ microscopy to investigate the real-time gypsum nucleation on self-assembled monolayers (SAMs) terminated with −CH3, −hybrid (a combination of NH2 and COOH), −COOH, −SO3, −NH3, and −OH functional groups. We report that the rate of gypsum formation is regulated by the surface functional groups and hydrophobicity, in the order of −CH3 > −hybrid > −COOH > −SO3 ≈ − NH3 > − OH. Results based on classical nucleation theory and molecular dynamics simulations reveal that nucleation pathways for hydrophilic surfaces involve surface-induced nucleation, with ion adsorption sites (i.e., functional groups) serving as anchors to facilitate the growth of vertically oriented clusters. Conversely, hydrophobic surfaces involve bulk nucleation with ions near the surface that coalesce into larger horizontal clusters. These findings provide new insights into the spatial and temporal characteristics of gypsum formation on various surfaces and highlight the significance of surface functional groups and hydrophobicity in governing gypsum formation mechanisms, while also acknowledging the possibility of alternative nucleation pathways due to the limitations of experimental techniques.

Suggested Citation

  • Yan-Fang Guan & Xiang-Yu Hong & Vasiliki Karanikola & Zhangxin Wang & Weiyi Pan & Heng-An Wu & Feng-Chao Wang & Han-Qing Yu & Menachem Elimelech, 2025. "Gypsum heterogenous nucleation pathways regulated by surface functional groups and hydrophobicity," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55993-w
    DOI: 10.1038/s41467-025-55993-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-55993-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-55993-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mike Sleutel & Jim Lutsko & Alexander E.S. Van Driessche & Miguel A. Durán-Olivencia & Dominique Maes, 2014. "Observing classical nucleation theory at work by monitoring phase transitions with molecular precision," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    2. Guoying Bai & Dong Gao & Zhang Liu & Xin Zhou & Jianjun Wang, 2019. "Probing the critical nucleus size for ice formation with graphene oxide nanosheets," Nature, Nature, vol. 576(7787), pages 437-441, December.
    3. Joanna Aizenberg & Andrew J. Black & George M. Whitesides, 1999. "Control of crystal nucleation by patterned self-assembled monolayers," Nature, Nature, vol. 398(6727), pages 495-498, April.
    4. Raffaella Demichelis & Paolo Raiteri & Julian D. Gale & David Quigley & Denis Gebauer, 2011. "Stable prenucleation mineral clusters are liquid-like ionic polymers," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    5. Gang Wu & Chen Qian & Wen-Li Lv & Xiaona Zhao & Xian-Wei Liu, 2023. "Dynamic imaging of interfacial electrochemistry on single Ag nanowires by azimuth-modulated plasmonic scattering interferometry," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Tomasz M. Stawski & Alexander E.S. van Driessche & Mercedes Ossorio & Juan Diego Rodriguez-Blanco & Rogier Besselink & Liane G. Benning, 2016. "Formation of calcium sulfate through the aggregation of sub-3 nanometre primary species," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    7. Nayoung Kim & Michael R. Thomas & Mads S. Bergholt & Isaac J. Pence & Hyejeong Seong & Patrick Charchar & Nevena Todorova & Anika Nagelkerke & Alexis Belessiotis-Richards & David J. Payne & Amy Gelmi , 2020. "Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    8. Chu Li & Zhuo Liu & Eshani C. Goonetilleke & Xuhui Huang, 2021. "Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xabier M. Aretxabaleta & Jon López-Zorrilla & Iñigo Etxebarria & Hegoi Manzano, 2023. "Multi-step nucleation pathway of C-S-H during cement hydration from atomistic simulations," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Meng Li & Nifang Zhao & Anran Mao & Mengning Wang & Ziyu Shao & Weiwei Gao & Hao Bai, 2023. "Preferential ice growth on grooved surface for crisscross-aligned graphene aerogel with large negative Poisson’s ratio," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. David P. McDonogh & Julian D. Gale & Paolo Raiteri & Denis Gebauer, 2024. "Redefined ion association constants have consequences for calcium phosphate nucleation and biomineralization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Fuqiang Chu & Shuxin Li & Canjun Zhao & Yanhui Feng & Yukai Lin & Xiaomin Wu & Xiao Yan & Nenad Miljkovic, 2024. "Interfacial ice sprouting during salty water droplet freezing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Xiao Yan & Samuel C. Y. Au & Sui Cheong Chan & Ying Lung Chan & Ngai Chun Leung & Wa Yat Wu & Dixon T. Sin & Guanlei Zhao & Casper H. Y. Chung & Mei Mei & Yinchuang Yang & Huihe Qiu & Shuhuai Yao, 2024. "Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Guo, Dan & Cao, Xuewen & Zhang, Pan & Ding, Gaoya & Liu, Yang & Cao, Hengguang & Bian, Jiang, 2022. "Heterogeneous condensation mechanism of methane-hexane binary mixture," Energy, Elsevier, vol. 256(C).
    9. Chen, Qin & Zhang, Guobin & Zhang, Xuzhong & Sun, Cheng & Jiao, Kui & Wang, Yun, 2021. "Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability," Applied Energy, Elsevier, vol. 286(C).
    10. Hamed Almohammadi & Sandra Martinek & Ye Yuan & Peter Fischer & Raffaele Mezzenga, 2023. "Disentangling kinetics from thermodynamics in heterogeneous colloidal systems," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Minyoung Lee & Sang Yup Lee & Min-Ho Kang & Tae Kyung Won & Sungsu Kang & Joodeok Kim & Jungwon Park & Dong June Ahn, 2024. "Observing growth and interfacial dynamics of nanocrystalline ice in thin amorphous ice films," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Sang Yup Lee & Minseong Kim & Tae Kyung Won & Seung Hyuk Back & Youngjoo Hong & Byeong-Su Kim & Dong June Ahn, 2022. "Janus regulation of ice growth by hyperbranched polyglycerols generating dynamic hydrogen bonding," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Conghui Tian & Lingxiao Shen & Chenjia Gong & Yunxia Cao & Qinghua Shi & Gang Zhao, 2022. "Microencapsulation and nanowarming enables vitrification cryopreservation of mouse preantral follicles," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55993-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.