IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45197-z.html
   My bibliography  Save this article

Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model

Author

Listed:
  • Zhifang Li

    (Lingang Laboratory)

  • Ruochen Guo

    (Lingang Laboratory
    State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences)

  • Xiaozhi Sun

    (Lingang Laboratory
    ShanghaiTech University)

  • Guoling Li

    (HuidaGene Therapeutics Inc)

  • Zhuang Shao

    (Lingang Laboratory)

  • Xiaona Huo

    (Lingang Laboratory
    Shanghai Center for Brain Science and Brain-Inspired Technology)

  • Rongrong Yang

    (Lingang Laboratory
    Shanghai Center for Brain Science and Brain-Inspired Technology)

  • Xinyu Liu

    (State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences)

  • Xi Cao

    (Lingang Laboratory
    Northwest A&F University)

  • Hainan Zhang

    (HuidaGene Therapeutics Inc)

  • Weihong Zhang

    (HuidaGene Therapeutics Inc)

  • Xiaoyin Zhang

    (Lingang Laboratory
    Shanghai Center for Brain Science and Brain-Inspired Technology)

  • Shuangyu Ma

    (Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine)

  • Meiling Zhang

    (Innovative Research Team of High-level Local Universities in Shanghai, School of Medicine, Shanghai Jiao Tong University)

  • Yuanhua Liu

    (State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences)

  • Yinan Yao

    (State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences)

  • Jinqi Shi

    (Lingang Laboratory)

  • Hui Yang

    (State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
    HuidaGene Therapeutics Inc
    Shanghai Center for Brain Science and Brain-Inspired Technology)

  • Chunyi Hu

    (National University of Singapore)

  • Yingsi Zhou

    (HuidaGene Therapeutics Inc)

  • Chunlong Xu

    (Lingang Laboratory
    ShanghaiTech University
    Shanghai Center for Brain Science and Brain-Inspired Technology)

Abstract

Transposon-associated ribonucleoprotein TnpB is known to be the ancestry endonuclease of diverse Cas12 effector proteins from type-V CRISPR system. Given its small size (408 aa), it is of interest to examine whether engineered TnpB could be used for efficient mammalian genome editing. Here, we showed that the gene editing activity of native TnpB from Deinococcus radiodurans (ISDra2 TnpB) in mouse embryos was already higher than previously identified small-sized Cas12f1. Further stepwise engineering of noncoding RNA (ωRNA or reRNA) component of TnpB significantly elevated the nuclease activity of TnpB. Notably, an optimized TnpB-ωRNA system could be efficiently delivered in vivo with single adeno-associated virus (AAV) and corrected the disease phenotype in a tyrosinaemia mouse model. Thus, the engineered miniature TnpB system represents a new addition to the current genome editing toolbox, with the unique feature of the smallest effector size that facilitate efficient AAV delivery for editing of cells and tissues.

Suggested Citation

  • Zhifang Li & Ruochen Guo & Xiaozhi Sun & Guoling Li & Zhuang Shao & Xiaona Huo & Rongrong Yang & Xinyu Liu & Xi Cao & Hainan Zhang & Weihong Zhang & Xiaoyin Zhang & Shuangyu Ma & Meiling Zhang & Yuanh, 2024. "Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45197-z
    DOI: 10.1038/s41467-024-45197-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45197-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45197-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar O. Abudayyeh & Jonathan S. Gootenberg & Patrick Essletzbichler & Shuo Han & Julia Joung & Joseph J. Belanto & Vanessa Verdine & David B. T. Cox & Max J. Kellner & Aviv Regev & Eric S. Lander & Da, 2017. "RNA targeting with CRISPR–Cas13," Nature, Nature, vol. 550(7675), pages 280-284, October.
    2. Tautvydas Karvelis & Gytis Druteika & Greta Bigelyte & Karolina Budre & Rimante Zedaveinyte & Arunas Silanskas & Darius Kazlauskas & Česlovas Venclovas & Virginijus Siksnys, 2021. "Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease," Nature, Nature, vol. 599(7886), pages 692-696, November.
    3. Giedrius Sasnauskas & Giedre Tamulaitiene & Gytis Druteika & Arturo Carabias & Arunas Silanskas & Darius Kazlauskas & Česlovas Venclovas & Guillermo Montoya & Tautvydas Karvelis & Virginijus Siksnys, 2023. "TnpB structure reveals minimal functional core of Cas12 nuclease family," Nature, Nature, vol. 616(7956), pages 384-389, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Feng & Ruyi Xu & Jianglan Liao & Jingyu Zhao & Baochang Zhang & Xiaoxiao Xu & Pengpeng Zhao & Xiaoning Wang & Jianyun Yao & Pengxia Wang & Xiaoxue Wang & Wenyuan Han & Qunxin She, 2024. "Flexible TAM requirement of TnpB enables efficient single-nucleotide editing with expanded targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Feiyu Zhao & Tao Zhang & Xiaodi Sun & Xiyun Zhang & Letong Chen & Hejun Wang & Jinze Li & Peng Fan & Liangxue Lai & Tingting Sui & Zhanjun Li, 2023. "A strategy for Cas13 miniaturization based on the structure and AlphaFold," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. David N. Fiflis & Nicolas A. Rey & Harshitha Venugopal-Lavanya & Beatrice Sewell & Aaron Mitchell-Dick & Katie N. Clements & Sydney Milo & Abigail R. Benkert & Alan Rosales & Sophia Fergione & Aravind, 2024. "Repurposing CRISPR-Cas13 systems for robust mRNA trans-splicing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Pei Liu & Josquin Foiret & Yinglin Situ & Nisi Zhang & Aris J. Kare & Bo Wu & Marina N. Raie & Katherine W. Ferrara & Lei S. Qi, 2023. "Sonogenetic control of multiplexed genome regulation and base editing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Lauren A. Blake & Leslie Watkins & Yang Liu & Takanari Inoue & Bin Wu, 2024. "A rapid inducible RNA decay system reveals fast mRNA decay in P-bodies," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Hongrui Zhao & Yan Sheng & Tenghua Zhang & Shujun Zhou & Yuqing Zhu & Feiyang Qian & Meiru Liu & Weixue Xu & Dengsong Zhang & Jiaming Hu, 2024. "The CRISPR-Cas13a Gemini System for noncontiguous target RNA activation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Evan A. Schwartz & Jack P. K. Bravo & Mohd Ahsan & Luis A. Macias & Caitlyn L. McCafferty & Tyler L. Dangerfield & Jada N. Walker & Jennifer S. Brodbelt & Giulia Palermo & Peter C. Fineran & Robert D., 2024. "RNA targeting and cleavage by the type III-Dv CRISPR effector complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Rezwan Siddiquee & Carol H. Pong & Ruth M. Hall & Sandro F. Ataide, 2024. "A programmable seekRNA guides target selection by IS1111 and IS110 type insertion sequences," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. M. Alejandra Zeballos C. & Hayden J. Moore & Tyler J. Smith & Jackson E. Powell & Najah S. Ahsan & Sijia Zhang & Thomas Gaj, 2023. "Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Yage Ding & Cristina Tous & Jaehoon Choi & Jingyao Chen & Wilson W. Wong, 2024. "Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Jeonghye Yu & Jongpil Shin & Jihwan Yu & Jihye Kim & Daseuli Yu & Won Do Heo, 2024. "Programmable RNA base editing with photoactivatable CRISPR-Cas13," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Mingyu Yao & Zhenhai Zeng & Siheng Li & Zhilin Zou & Zhongxing Chen & Xinyi Chen & Qingyi Gao & Guoli Zhao & Aodong Chen & Zheng Li & Yiran Wang & Rui Ning & Colm McAlinden & Xingtao Zhou & Jinhai Hua, 2024. "CRISPR-CasRx-mediated disruption of Aqp1/Adrb2/Rock1/Rock2 genes reduces intraocular pressure and retinal ganglion cell damage in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Xiangyu Deng & Emmanuel Osikpa & Jie Yang & Seye J. Oladeji & Jamie Smith & Xue Gao & Yang Gao, 2023. "Structural basis for the activation of a compact CRISPR-Cas13 nuclease," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Xiaolong Cheng & Zexu Li & Ruocheng Shan & Zihan Li & Shengnan Wang & Wenchang Zhao & Han Zhang & Lumen Chao & Jian Peng & Teng Fei & Wei Li, 2023. "Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Dmitrii Degtev & Jack Bravo & Aikaterini Emmanouilidi & Aleksandar Zdravković & Oi Kuan Choong & Julia Liz Touza & Niklas Selfjord & Isabel Weisheit & Margherita Francescatto & Pinar Akcakaya & Michel, 2024. "Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Duško Lainšček & Vida Forstnerič & Veronika Mikolič & Špela Malenšek & Peter Pečan & Mojca Benčina & Matjaž Sever & Helena Podgornik & Roman Jerala, 2022. "Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Breanna DiAndreth & Noreen Wauford & Eileen Hu & Sebastian Palacios & Ron Weiss, 2022. "PERSIST platform provides programmable RNA regulation using CRISPR endoRNases," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45197-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.