IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47281-w.html
   My bibliography  Save this article

The CRISPR-Cas13a Gemini System for noncontiguous target RNA activation

Author

Listed:
  • Hongrui Zhao

    (Shanghai University
    South China Normal University)

  • Yan Sheng

    (South China Normal University
    Shanghai University)

  • Tenghua Zhang

    (South China Normal University)

  • Shujun Zhou

    (South China Normal University)

  • Yuqing Zhu

    (South China Normal University)

  • Feiyang Qian

    (South China Normal University)

  • Meiru Liu

    (Shanghai University)

  • Weixue Xu

    (Shanghai University)

  • Dengsong Zhang

    (Shanghai University)

  • Jiaming Hu

    (Shanghai University
    South China Normal University)

Abstract

Simultaneous multi-target detection and multi-site gene editing are two key factors restricting the development of disease diagnostic and treatment technologies. Despite numerous explorations on the source, classification, functional features, crystal structure, applications and engineering of CRISPR-Cas13a, all reports use the contiguous target RNA activation paradigm that only enables single-target detection in vitro and one-site gene editing in vivo. Here we propose a noncontiguous target RNA activation paradigm of Cas13a and establish a CRISPR-Cas13a Gemini System composed of two Cas13a:crRNA binary complexes, which can provide rapid, simultaneous, highly specific and sensitive detection of two RNAs in a single readout, as well as parallel dual transgene knockdown. CRISPR-Cas13a Gemini System are demonstrated in the detection of two miRNAs (miR-155 and miR-375) for breast cancer diagnosis and two small RNAs (EBER-1 and EBER-2) for Epstein-Barr virus diagnosis using multiple diagnostic platforms, including fluorescence and colorimetric-based lateral flow systems. We also show that CRISPR-Cas13a Gemini System can knockdown two foreign genes (EGFP and mCherry transcripts) in mammalian cells simultaneously. These findings suggest the potential of highly effective and simultaneous detection of multiple biomarkers and gene editing of multiple sites.

Suggested Citation

  • Hongrui Zhao & Yan Sheng & Tenghua Zhang & Shujun Zhou & Yuqing Zhu & Feiyang Qian & Meiru Liu & Weixue Xu & Dengsong Zhang & Jiaming Hu, 2024. "The CRISPR-Cas13a Gemini System for noncontiguous target RNA activation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47281-w
    DOI: 10.1038/s41467-024-47281-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47281-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47281-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexandra East-Seletsky & Mitchell R. O’Connell & Spencer C. Knight & David Burstein & Jamie H. D. Cate & Robert Tjian & Jennifer A. Doudna, 2016. "Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection," Nature, Nature, vol. 538(7624), pages 270-273, October.
    2. Omar O. Abudayyeh & Jonathan S. Gootenberg & Patrick Essletzbichler & Shuo Han & Julia Joung & Joseph J. Belanto & Vanessa Verdine & David B. T. Cox & Max J. Kellner & Aviv Regev & Eric S. Lander & Da, 2017. "RNA targeting with CRISPR–Cas13," Nature, Nature, vol. 550(7675), pages 280-284, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Feiyu Zhao & Tao Zhang & Xiaodi Sun & Xiyun Zhang & Letong Chen & Hejun Wang & Jinze Li & Peng Fan & Liangxue Lai & Tingting Sui & Zhanjun Li, 2023. "A strategy for Cas13 miniaturization based on the structure and AlphaFold," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. M. Alejandra Zeballos C. & Hayden J. Moore & Tyler J. Smith & Jackson E. Powell & Najah S. Ahsan & Sijia Zhang & Thomas Gaj, 2023. "Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Xiangyu Deng & Emmanuel Osikpa & Jie Yang & Seye J. Oladeji & Jamie Smith & Xue Gao & Yang Gao, 2023. "Structural basis for the activation of a compact CRISPR-Cas13 nuclease," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Shunsuke Kawasaki & Hiroki Ono & Moe Hirosawa & Takeru Kuwabara & Shunsuke Sumi & Suji Lee & Knut Woltjen & Hirohide Saito, 2023. "Programmable mammalian translational modulators by CRISPR-associated proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. David N. Fiflis & Nicolas A. Rey & Harshitha Venugopal-Lavanya & Beatrice Sewell & Aaron Mitchell-Dick & Katie N. Clements & Sydney Milo & Abigail R. Benkert & Alan Rosales & Sophia Fergione & Aravind, 2024. "Repurposing CRISPR-Cas13 systems for robust mRNA trans-splicing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Pei Liu & Josquin Foiret & Yinglin Situ & Nisi Zhang & Aris J. Kare & Bo Wu & Marina N. Raie & Katherine W. Ferrara & Lei S. Qi, 2023. "Sonogenetic control of multiplexed genome regulation and base editing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Lauren A. Blake & Leslie Watkins & Yang Liu & Takanari Inoue & Bin Wu, 2024. "A rapid inducible RNA decay system reveals fast mRNA decay in P-bodies," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Zhifang Li & Ruochen Guo & Xiaozhi Sun & Guoling Li & Zhuang Shao & Xiaona Huo & Rongrong Yang & Xinyu Liu & Xi Cao & Hainan Zhang & Weihong Zhang & Xiaoyin Zhang & Shuangyu Ma & Meiling Zhang & Yuanh, 2024. "Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Yuqian Guo & Yaofeng Zhou & Hong Duan & Derong Xu & Min Wei & Yuhao Wu & Ying Xiong & Xirui Chen & Siyuan Wang & Daofeng Liu & Xiaolin Huang & Hongbo Xin & Yonghua Xiong & Ben Zhong Tang, 2024. "CRISPR/Cas-mediated “one to more” lighting-up nucleic acid detection using aggregation-induced emission luminogens," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Evan A. Schwartz & Jack P. K. Bravo & Mohd Ahsan & Luis A. Macias & Caitlyn L. McCafferty & Tyler L. Dangerfield & Jada N. Walker & Jennifer S. Brodbelt & Giulia Palermo & Peter C. Fineran & Robert D., 2024. "RNA targeting and cleavage by the type III-Dv CRISPR effector complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Ning Cui & Jun-Tao Zhang & Zhuolin Li & Xiao-Yu Liu & Chongyuan Wang & Hongda Huang & Ning Jia, 2022. "Structural basis for the non-self RNA-activated protease activity of the type III-E CRISPR nuclease-protease Craspase," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Yage Ding & Cristina Tous & Jaehoon Choi & Jingyao Chen & Wilson W. Wong, 2024. "Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. Jeonghye Yu & Jongpil Shin & Jihwan Yu & Jihye Kim & Daseuli Yu & Won Do Heo, 2024. "Programmable RNA base editing with photoactivatable CRISPR-Cas13," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Mingyu Yao & Zhenhai Zeng & Siheng Li & Zhilin Zou & Zhongxing Chen & Xinyi Chen & Qingyi Gao & Guoli Zhao & Aodong Chen & Zheng Li & Yiran Wang & Rui Ning & Colm McAlinden & Xingtao Zhou & Jinhai Hua, 2024. "CRISPR-CasRx-mediated disruption of Aqp1/Adrb2/Rock1/Rock2 genes reduces intraocular pressure and retinal ganglion cell damage in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Hung-Che Kuo & Joshua Prupes & Chia-Wei Chou & Ilya J. Finkelstein, 2024. "Massively parallel profiling of RNA-targeting CRISPR-Cas13d," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Xiaolong Cheng & Zexu Li & Ruocheng Shan & Zihan Li & Shengnan Wang & Wenchang Zhao & Han Zhang & Lumen Chao & Jian Peng & Teng Fei & Wei Li, 2023. "Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Duško Lainšček & Vida Forstnerič & Veronika Mikolič & Špela Malenšek & Peter Pečan & Mojca Benčina & Matjaž Sever & Helena Podgornik & Roman Jerala, 2022. "Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Yunxiang Wang & Hong Chen & Kai Lin & Yongjun Han & Zhixia Gu & Hongjuan Wei & Kai Mu & Dongfeng Wang & Liyan Liu & Ronghua Jin & Rui Song & Zhen Rong & Shengqi Wang, 2024. "Ultrasensitive single-step CRISPR detection of monkeypox virus in minutes with a vest-pocket diagnostic device," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47281-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.