IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v599y2021i7886d10.1038_s41586-021-04058-1.html
   My bibliography  Save this article

Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease

Author

Listed:
  • Tautvydas Karvelis

    (Vilnius University)

  • Gytis Druteika

    (Vilnius University)

  • Greta Bigelyte

    (Vilnius University)

  • Karolina Budre

    (Vilnius University)

  • Rimante Zedaveinyte

    (Vilnius University)

  • Arunas Silanskas

    (Vilnius University)

  • Darius Kazlauskas

    (Vilnius University)

  • Česlovas Venclovas

    (Vilnius University)

  • Virginijus Siksnys

    (Vilnius University)

Abstract

Transposition has a key role in reshaping genomes of all living organisms1. Insertion sequences of IS200/IS605 and IS607 families2 are among the simplest mobile genetic elements and contain only the genes that are required for their transposition and its regulation. These elements encode tnpA transposase, which is essential for mobilization, and often carry an accessory tnpB gene, which is dispensable for transposition. Although the role of TnpA in transposon mobilization of IS200/IS605 is well documented, the function of TnpB has remained largely unknown. It had been suggested that TnpB has a role in the regulation of transposition, although no mechanism for this has been established3–5. A bioinformatic analysis indicated that TnpB might be a predecessor of the CRISPR–Cas9/Cas12 nucleases6–8. However, no biochemical activities have been ascribed to TnpB. Here we show that TnpB of Deinococcus radiodurans ISDra2 is an RNA-directed nuclease that is guided by an RNA, derived from the right-end element of a transposon, to cleave DNA next to the 5′-TTGAT transposon-associated motif. We also show that TnpB could be reprogrammed to cleave DNA target sites in human cells. Together, this study expands our understanding of transposition mechanisms by highlighting the role of TnpB in transposition, experimentally confirms that TnpB is a functional progenitor of CRISPR–Cas nucleases and establishes TnpB as a prototype of a new system for genome editing.

Suggested Citation

  • Tautvydas Karvelis & Gytis Druteika & Greta Bigelyte & Karolina Budre & Rimante Zedaveinyte & Arunas Silanskas & Darius Kazlauskas & Česlovas Venclovas & Virginijus Siksnys, 2021. "Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease," Nature, Nature, vol. 599(7886), pages 692-696, November.
  • Handle: RePEc:nat:nature:v:599:y:2021:i:7886:d:10.1038_s41586-021-04058-1
    DOI: 10.1038/s41586-021-04058-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-04058-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-04058-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rezwan Siddiquee & Carol H. Pong & Ruth M. Hall & Sandro F. Ataide, 2024. "A programmable seekRNA guides target selection by IS1111 and IS110 type insertion sequences," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Xinyi Zhou & Guangyong Chen & Junjie Ye & Ercheng Wang & Jun Zhang & Cong Mao & Zhanwei Li & Jianye Hao & Xingxu Huang & Jin Tang & Pheng Ann Heng, 2023. "ProRefiner: an entropy-based refining strategy for inverse protein folding with global graph attention," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Xu Feng & Ruyi Xu & Jianglan Liao & Jingyu Zhao & Baochang Zhang & Xiaoxiao Xu & Pengpeng Zhao & Xiaoning Wang & Jianyun Yao & Pengxia Wang & Xiaoxue Wang & Wenyuan Han & Qunxin She, 2024. "Flexible TAM requirement of TnpB enables efficient single-nucleotide editing with expanded targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Zhifang Li & Ruochen Guo & Xiaozhi Sun & Guoling Li & Zhuang Shao & Xiaona Huo & Rongrong Yang & Xinyu Liu & Xi Cao & Hainan Zhang & Weihong Zhang & Xiaoyin Zhang & Shuangyu Ma & Meiling Zhang & Yuanh, 2024. "Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:599:y:2021:i:7886:d:10.1038_s41586-021-04058-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.