IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30172-3.html
   My bibliography  Save this article

PERSIST platform provides programmable RNA regulation using CRISPR endoRNases

Author

Listed:
  • Breanna DiAndreth

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Noreen Wauford

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Eileen Hu

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Sebastian Palacios

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

  • Ron Weiss

    (Massachusetts Institute of Technology
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Regulated transgene expression is an integral component of gene therapies, cell therapies and biomanufacturing. However, transcription factor-based regulation, upon which most applications are based, suffers from complications such as epigenetic silencing that limit expression longevity and reliability. Constitutive transgene transcription paired with post-transcriptional gene regulation could combat silencing, but few such RNA- or protein-level platforms exist. Here we develop an RNA-regulation platform we call “PERSIST" which consists of nine CRISPR-specific endoRNases as RNA-level activators and repressors as well as modular OFF- and ON-switch regulatory motifs. We show that PERSIST-regulated transgenes exhibit strong OFF and ON responses, resist silencing for at least two months, and can be readily layered to construct cascades, logic functions, switches and other sophisticated circuit topologies. The orthogonal, modular and composable nature of this platform as well as the ease in constructing robust and predictable gene circuits promises myriad applications in gene and cell therapies.

Suggested Citation

  • Breanna DiAndreth & Noreen Wauford & Eileen Hu & Sebastian Palacios & Ron Weiss, 2022. "PERSIST platform provides programmable RNA regulation using CRISPR endoRNases," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30172-3
    DOI: 10.1038/s41467-022-30172-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30172-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30172-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omar O. Abudayyeh & Jonathan S. Gootenberg & Patrick Essletzbichler & Shuo Han & Julia Joung & Joseph J. Belanto & Vanessa Verdine & David B. T. Cox & Max J. Kellner & Aviv Regev & Eric S. Lander & Da, 2017. "RNA targeting with CRISPR–Cas13," Nature, Nature, vol. 550(7675), pages 280-284, October.
    2. Jeremy J. Gam & Jonathan Babb & Ron Weiss, 2018. "A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Simon Ausländer & David Ausländer & Marius Müller & Markus Wieland & Martin Fussenegger, 2012. "Programmable single-cell mammalian biocomputers," Nature, Nature, vol. 487(7405), pages 123-127, July.
    4. Ross D. Jones & Yili Qian & Velia Siciliano & Breanna DiAndreth & Jin Huh & Ron Weiss & Domitilla Del Vecchio, 2020. "An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    5. Tina Lebar & Urban Bezeljak & Anja Golob & Miha Jerala & Lucija Kadunc & Boštjan Pirš & Martin Stražar & Dušan Vučko & Uroš Zupančič & Mojca Benčina & Vida Forstnerič & Rok Gaber & Jan Lonzarić & Andr, 2014. "A bistable genetic switch based on designable DNA-binding domains," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    6. Federica Cella & Liliana Wroblewska & Ron Weiss & Velia Siciliano, 2018. "Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shunsuke Kawasaki & Hiroki Ono & Moe Hirosawa & Takeru Kuwabara & Shunsuke Sumi & Suji Lee & Knut Woltjen & Hirohide Saito, 2023. "Programmable mammalian translational modulators by CRISPR-associated proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Hui Ning & Gan Liu & Lei Li & Qiang Liu & Huiya Huang & Zhen Xie, 2023. "Rational design of microRNA-responsive switch for programmable translational control in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Giuliano De Carluccio & Virginia Fusco & Diego di Bernardo, 2024. "Engineering a synthetic gene circuit for high-performance inducible expression in mammalian systems," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Yage Ding & Cristina Tous & Jaehoon Choi & Jingyao Chen & Wilson W. Wong, 2024. "Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunsuke Kawasaki & Hiroki Ono & Moe Hirosawa & Takeru Kuwabara & Shunsuke Sumi & Suji Lee & Knut Woltjen & Hirohide Saito, 2023. "Programmable mammalian translational modulators by CRISPR-associated proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Antonios Apostolopoulos & Naohiro Kawamoto & Siu Yu A. Chow & Hitomi Tsuiji & Yoshiho Ikeuchi & Yuichi Shichino & Shintaro Iwasaki, 2024. "dCas13-mediated translational repression for accurate gene silencing in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Nik Franko & Ana Palma Teixeira & Shuai Xue & Ghislaine Charpin-El Hamri & Martin Fussenegger, 2021. "Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Feiyu Zhao & Tao Zhang & Xiaodi Sun & Xiyun Zhang & Letong Chen & Hejun Wang & Jinze Li & Peng Fan & Liangxue Lai & Tingting Sui & Zhanjun Li, 2023. "A strategy for Cas13 miniaturization based on the structure and AlphaFold," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. David N. Fiflis & Nicolas A. Rey & Harshitha Venugopal-Lavanya & Beatrice Sewell & Aaron Mitchell-Dick & Katie N. Clements & Sydney Milo & Abigail R. Benkert & Alan Rosales & Sophia Fergione & Aravind, 2024. "Repurposing CRISPR-Cas13 systems for robust mRNA trans-splicing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Yafeng Wang & Guiquan Zhang & Qingzhou Meng & Shisheng Huang & Panpan Guo & Qibin Leng & Lingyun Sun & Geng Liu & Xingxu Huang & Jianghuai Liu, 2022. "Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Pei Liu & Josquin Foiret & Yinglin Situ & Nisi Zhang & Aris J. Kare & Bo Wu & Marina N. Raie & Katherine W. Ferrara & Lei S. Qi, 2023. "Sonogenetic control of multiplexed genome regulation and base editing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Roberto Di Blasi & Mara Pisani & Fabiana Tedeschi & Masue M. Marbiah & Karen Polizzi & Simone Furini & Velia Siciliano & Francesca Ceroni, 2023. "Resource-aware construct design in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Lauren A. Blake & Leslie Watkins & Yang Liu & Takanari Inoue & Bin Wu, 2024. "A rapid inducible RNA decay system reveals fast mRNA decay in P-bodies," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Hui Ning & Gan Liu & Lei Li & Qiang Liu & Huiya Huang & Zhen Xie, 2023. "Rational design of microRNA-responsive switch for programmable translational control in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Hongrui Zhao & Yan Sheng & Tenghua Zhang & Shujun Zhou & Yuqing Zhu & Feiyang Qian & Meiru Liu & Weixue Xu & Dengsong Zhang & Jiaming Hu, 2024. "The CRISPR-Cas13a Gemini System for noncontiguous target RNA activation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Zhifang Li & Ruochen Guo & Xiaozhi Sun & Guoling Li & Zhuang Shao & Xiaona Huo & Rongrong Yang & Xinyu Liu & Xi Cao & Hainan Zhang & Weihong Zhang & Xiaoyin Zhang & Shuangyu Ma & Meiling Zhang & Yuanh, 2024. "Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Wenhui Li & Xianyue Jiang & Wuke Wang & Liya Hou & Runze Cai & Yongqian Li & Qiuxi Gu & Qinchang Chen & Peixiang Ma & Jin Tang & Menghao Guo & Guohui Chuai & Xingxu Huang & Jun Zhang & Qi Liu, 2024. "Discovering CRISPR-Cas system with self-processing pre-crRNA capability by foundation models," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Shodai Komatsu & Hirohisa Ohno & Hirohide Saito, 2023. "Target-dependent RNA polymerase as universal platform for gene expression control in response to intracellular molecules," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Ross D. Jones & Yili Qian & Katherine Ilia & Benjamin Wang & Michael T. Laub & Domitilla Del Vecchio & Ron Weiss, 2022. "Robust and tunable signal processing in mammalian cells via engineered covalent modification cycles," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Evan A. Schwartz & Jack P. K. Bravo & Mohd Ahsan & Luis A. Macias & Caitlyn L. McCafferty & Tyler L. Dangerfield & Jada N. Walker & Jennifer S. Brodbelt & Giulia Palermo & Peter C. Fineran & Robert D., 2024. "RNA targeting and cleavage by the type III-Dv CRISPR effector complex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. M. Alejandra Zeballos C. & Hayden J. Moore & Tyler J. Smith & Jackson E. Powell & Najah S. Ahsan & Sijia Zhang & Thomas Gaj, 2023. "Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Anna-Maria Makri Pistikou & Glenn A. O. Cremers & Bryan L. Nathalia & Theodorus J. Meuleman & Bas W. A. Bögels & Bruno V. Eijkens & Anne Dreu & Maarten T. H. Bezembinder & Oscar M. J. A. Stassen & Car, 2023. "Engineering a scalable and orthogonal platform for synthetic communication in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30172-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.