IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47697-4.html
   My bibliography  Save this article

Flexible TAM requirement of TnpB enables efficient single-nucleotide editing with expanded targeting scope

Author

Listed:
  • Xu Feng

    (Shandong University)

  • Ruyi Xu

    (Shandong University)

  • Jianglan Liao

    (Shandong University)

  • Jingyu Zhao

    (Shandong University
    Shandong Normal University)

  • Baochang Zhang

    (Shandong University)

  • Xiaoxiao Xu

    (Shandong University)

  • Pengpeng Zhao

    (Shandong University)

  • Xiaoning Wang

    (Shandong University)

  • Jianyun Yao

    (Chinese Academy of Sciences)

  • Pengxia Wang

    (Chinese Academy of Sciences)

  • Xiaoxue Wang

    (Chinese Academy of Sciences)

  • Wenyuan Han

    (Huazhong Agricultural University)

  • Qunxin She

    (Shandong University)

Abstract

TnpBs encoded by the IS200/IS605 family transposon are among the most abundant prokaryotic proteins from which type V CRISPR-Cas nucleases may have evolved. Since bacterial TnpBs can be programmed for RNA-guided dsDNA cleavage in the presence of a transposon-adjacent motif (TAM), these nucleases hold immense promise for genome editing. However, the activity and targeting specificity of TnpB in homology-directed gene editing remain unknown. Here we report that a thermophilic archaeal TnpB enables efficient gene editing in the natural host. Interestingly, the TnpB has different TAM requirements for eliciting cell death and for facilitating gene editing. By systematically characterizing TAM variants, we reveal that the TnpB recognizes a broad range of TAM sequences for gene editing including those that do not elicit apparent cell death. Importantly, TnpB shows a very high targeting specificity on targets flanked by a weak TAM. Taking advantage of this feature, we successfully leverage TnpB for efficient single-nucleotide editing with templated repair. The use of different weak TAM sequences not only facilitates more flexible gene editing with increased cell survival, but also greatly expands targeting scopes, and this strategy is probably applicable to diverse CRISPR-Cas systems.

Suggested Citation

  • Xu Feng & Ruyi Xu & Jianglan Liao & Jingyu Zhao & Baochang Zhang & Xiaoxiao Xu & Pengpeng Zhao & Xiaoning Wang & Jianyun Yao & Pengxia Wang & Xiaoxue Wang & Wenyuan Han & Qunxin She, 2024. "Flexible TAM requirement of TnpB enables efficient single-nucleotide editing with expanded targeting scope," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47697-4
    DOI: 10.1038/s41467-024-47697-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47697-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47697-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Summer B. Thyme & Laila Akhmetova & Tessa G. Montague & Eivind Valen & Alexander F. Schier, 2016. "Internal guide RNA interactions interfere with Cas9-mediated cleavage," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    2. Daphne Collias & Elena Vialetto & Jiaqi Yu & Khoa Co & Éva d. H. Almási & Ann-Sophie Rüttiger & Tatjana Achmedov & Till Strowig & Chase L. Beisel, 2023. "Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Makoto Saito & Peiyu Xu & Guilhem Faure & Samantha Maguire & Soumya Kannan & Han Altae-Tran & Sam Vo & AnAn Desimone & Rhiannon K. Macrae & Feng Zhang, 2023. "Fanzor is a eukaryotic programmable RNA-guided endonuclease," Nature, Nature, vol. 620(7974), pages 660-668, August.
    4. Benjamin P. Kleinstiver & Michelle S. Prew & Shengdar Q. Tsai & Ved V. Topkar & Nhu T. Nguyen & Zongli Zheng & Andrew P. W. Gonzales & Zhuyun Li & Randall T. Peterson & Jing-Ruey Joanna Yeh & Martin J, 2015. "Engineered CRISPR-Cas9 nucleases with altered PAM specificities," Nature, Nature, vol. 523(7561), pages 481-485, July.
    5. Tautvydas Karvelis & Gytis Druteika & Greta Bigelyte & Karolina Budre & Rimante Zedaveinyte & Arunas Silanskas & Darius Kazlauskas & Česlovas Venclovas & Virginijus Siksnys, 2021. "Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease," Nature, Nature, vol. 599(7886), pages 692-696, November.
    6. Samuel H. Sternberg & Sy Redding & Martin Jinek & Eric C. Greene & Jennifer A. Doudna, 2014. "DNA interrogation by the CRISPR RNA-guided endonuclease Cas9," Nature, Nature, vol. 507(7490), pages 62-67, March.
    7. Giedrius Sasnauskas & Giedre Tamulaitiene & Gytis Druteika & Arturo Carabias & Arunas Silanskas & Darius Kazlauskas & Česlovas Venclovas & Guillermo Montoya & Tautvydas Karvelis & Virginijus Siksnys, 2023. "TnpB structure reveals minimal functional core of Cas12 nuclease family," Nature, Nature, vol. 616(7956), pages 384-389, April.
    8. Daphne Collias & Chase L. Beisel, 2021. "CRISPR technologies and the search for the PAM-free nuclease," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sundaram Acharya & Asgar Hussain Ansari & Prosad Kumar Das & Seiichi Hirano & Meghali Aich & Riya Rauthan & Sudipta Mahato & Savitri Maddileti & Sajal Sarkar & Manoj Kumar & Rhythm Phutela & Sneha Gul, 2024. "PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Fang Liang & Yu Zhang & Lin Li & Yexin Yang & Ji-Feng Fei & Yanmei Liu & Wei Qin, 2022. "SpG and SpRY variants expand the CRISPR toolbox for genome editing in zebrafish," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Margot Karlikow & Evan Amalfitano & Xiaolong Yang & Jennifer Doucet & Abigail Chapman & Peivand Sadat Mousavi & Paige Homme & Polina Sutyrina & Winston Chan & Sofia Lemak & Alexander F. Yakunin & Adam, 2023. "CRISPR-induced DNA reorganization for multiplexed nucleic acid detection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Zhifang Li & Ruochen Guo & Xiaozhi Sun & Guoling Li & Zhuang Shao & Xiaona Huo & Rongrong Yang & Xinyu Liu & Xi Cao & Hainan Zhang & Weihong Zhang & Xiaoyin Zhang & Shuangyu Ma & Meiling Zhang & Yuanh, 2024. "Engineering a transposon-associated TnpB-ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Giulia I. Corsi & Kunli Qu & Ferhat Alkan & Xiaoguang Pan & Yonglun Luo & Jan Gorodkin, 2022. "CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Lin Zhao & Sabrina R. T. Koseki & Rachel A. Silverstein & Nadia Amrani & Christina Peng & Christian Kramme & Natasha Savic & Martin Pacesa & Tomás C. Rodríguez & Teodora Stan & Emma Tysinger & Lauren , 2023. "PAM-flexible genome editing with an engineered chimeric Cas9," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Jeremy Vicencio & Carlos Sánchez-Bolaños & Ismael Moreno-Sánchez & David Brena & Charles E. Vejnar & Dmytro Kukhtar & Miguel Ruiz-López & Mariona Cots-Ponjoan & Alejandro Rubio & Natalia Rodrigo Meler, 2022. "Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Grace N. Hibshman & Jack P. K. Bravo & Matthew M. Hooper & Tyler L. Dangerfield & Hongshan Zhang & Ilya J. Finkelstein & Kenneth A. Johnson & David W. Taylor, 2024. "Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Zhaohui Zhong & Guanqing Liu & Zhongjie Tang & Shuyue Xiang & Liang Yang & Lan Huang & Yao He & Tingting Fan & Shishi Liu & Xuelian Zheng & Tao Zhang & Yiping Qi & Jian Huang & Yong Zhang, 2023. "Efficient plant genome engineering using a probiotic sourced CRISPR-Cas9 system," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Jian Wang & Yuxi Teng & Ruihua Zhang & Yifei Wu & Lei Lou & Yusong Zou & Michelle Li & Zhong-Ru Xie & Yajun Yan, 2021. "Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Yi-Li Feng & Qian Liu & Ruo-Dan Chen & Si-Cheng Liu & Zhi-Cheng Huang & Kun-Ming Liu & Xiao-Ying Yang & An-Yong Xie, 2022. "DNA nicks induce mutational signatures associated with BRCA1 deficiency," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Michael Kosicki & Felicity Allen & Frances Steward & Kärt Tomberg & Yangyang Pan & Allan Bradley, 2022. "Cas9-induced large deletions and small indels are controlled in a convergent fashion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Guoling Li & Xue Dong & Jiamin Luo & Tanglong Yuan & Tong Li & Guoli Zhao & Hainan Zhang & Jingxing Zhou & Zhenhai Zeng & Shuna Cui & Haoqiang Wang & Yin Wang & Yuyang Yu & Yuan Yuan & Erwei Zuo & Chu, 2024. "Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Matteo Ciciani & Michele Demozzi & Eleonora Pedrazzoli & Elisabetta Visentin & Laura Pezzè & Lorenzo Federico Signorini & Aitor Blanco-Miguez & Moreno Zolfo & Francesco Asnicar & Antonio Casini & Anna, 2022. "Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Rezwan Siddiquee & Carol H. Pong & Ruth M. Hall & Sandro F. Ataide, 2024. "A programmable seekRNA guides target selection by IS1111 and IS110 type insertion sequences," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Shuqian Zhang & Liting Song & Bo Yuan & Cheng Zhang & Jixin Cao & Jinlong Chen & Jiayi Qiu & Yilin Tai & Jingqi Chen & Zilong Qiu & Xing-Ming Zhao & Tian-Lin Cheng, 2023. "TadA reprogramming to generate potent miniature base editors with high precision," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Dawn G. L. Thean & Hoi Yee Chu & John H. C. Fong & Becky K. C. Chan & Peng Zhou & Cynthia C. S. Kwok & Yee Man Chan & Silvia Y. L. Mak & Gigi C. G. Choi & Joshua W. K. Ho & Zongli Zheng & Alan S. L. W, 2022. "Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Jian Wang & Ke Wang & Zhe Deng & Zhiyu Zhong & Guo Sun & Qing Mei & Fuling Zhou & Zixin Deng & Yuhui Sun, 2024. "Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47697-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.