IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45060-1.html
   My bibliography  Save this article

A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells

Author

Listed:
  • Peimiao Zou

    (University of Warwick)

  • Dinu Iuga

    (University of Warwick)

  • Sanliang Ling

    (University of Nottingham)

  • Alex J. Brown

    (University of Warwick)

  • Shigang Chen

    (University of Warwick)

  • Mengfei Zhang

    (University of Warwick)

  • Yisong Han

    (University of Warwick)

  • A. Dominic Fortes

    (Harwell Science and Innovation Campus)

  • Christopher M. Howard

    (Harwell Science and Innovation Campus)

  • Shanwen Tao

    (University of Warwick
    Monash University)

Abstract

Low temperature ionic conducting materials such as OH− and H+ ionic conductors are important electrolytes for electrochemical devices. Here we show the discovery of mixed OH−/H+ conduction in ceramic materials. SrZr0.8Y0.2O3-δ exhibits a high ionic conductivity of approximately 0.01 S cm−1 at 90 °C in both water and wet air, which has been demonstrated by direct ammonia fuel cells. Neutron diffraction confirms the presence of OD bonds in the lattice of deuterated SrZr0.8Y0.2O3-δ. The OH− ionic conduction of CaZr0.8Y0.2O3-δ in water was demonstrated by electrolysis of both H218O and D2O. The ionic conductivity of CaZr0.8Y0.2O3-δ in 6 M KOH solution is around 0.1 S cm−1 at 90 °C, 100 times higher than that in pure water, indicating increased OH− ionic conductivity with a higher concentration of feed OH− ions. Density functional theory calculations suggest the diffusion of OH− ions relies on oxygen vacancies and temporarily formed hydrogen bonds. This opens a window to discovering new ceramic ionic conducting materials for near ambient temperature fuel cells, electrolysers and other electrochemical devices.

Suggested Citation

  • Peimiao Zou & Dinu Iuga & Sanliang Ling & Alex J. Brown & Shigang Chen & Mengfei Zhang & Yisong Han & A. Dominic Fortes & Christopher M. Howard & Shanwen Tao, 2024. "A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45060-1
    DOI: 10.1038/s41467-024-45060-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45060-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45060-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Dai & Yinlong Zhu & Yu Chen & Xue Wen & Mingce Long & Xinhao Wu & Zhiwei Hu & Daqin Guan & Xixi Wang & Chuan Zhou & Qian Lin & Yifei Sun & Shih-Chang Weng & Huanting Wang & Wei Zhou & Zongping Sha, 2022. "Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Brian C. H. Steele & Angelika Heinzel, 2001. "Materials for fuel-cell technologies," Nature, Nature, vol. 414(6861), pages 345-352, November.
    3. Sihyuk Choi & Chris J. Kucharczyk & Yangang Liang & Xiaohang Zhang & Ichiro Takeuchi & Ho-Il Ji & Sossina M. Haile, 2018. "Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells," Nature Energy, Nature, vol. 3(3), pages 202-210, March.
    4. Junhua Wang & Yun Zhao & Brian P. Setzler & Santiago Rojas-Carbonell & Chaya Ben Yehuda & Alina Amel & Miles Page & Lan Wang & Keda Hu & Lin Shi & Shimshon Gottesfeld & Bingjun Xu & Yushan Yan, 2019. "Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells," Nature Energy, Nature, vol. 4(5), pages 392-398, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, J. & Sengodan, S. & Kim, S. & Kwon, O. & Bu, Y. & Kim, G., 2019. "Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 606-618.
    2. Fan Liu & Chuancheng Duan, 2021. "Direct-Hydrocarbon Proton-Conducting Solid Oxide Fuel Cells," Sustainability, MDPI, vol. 13(9), pages 1-9, April.
    3. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    4. Ziang Xu & Lei Wan & Yiwen Liao & Maobin Pang & Qin Xu & Peican Wang & Baoguo Wang, 2023. "Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cm−2," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    6. Saurabh Singh & Raghvendra Pandey & Sabrina Presto & Maria Paola Carpanese & Antonio Barbucci & Massimo Viviani & Prabhakar Singh, 2019. "Suitability of Sm 3+ - Substituted SrTiO 3 as Anode Materials for Solid Oxide Fuel Cells: A Correlation between Structural and Electrical Properties," Energies, MDPI, vol. 12(21), pages 1-16, October.
    7. Vinoth Kumar, R. & Khandale, A.P., 2022. "A review on recent progress and selection of cobalt-based cathode materials for low temperature-solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Jine Wu & Chenyi Liao & Tianyu Li & Jing Zhou & Linjuan Zhang & Jian-Qiang Wang & Guohui Li & Xianfeng Li, 2023. "Metal-coordinated polybenzimidazole membranes with preferential K+ transport," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Al-Fatesh, Ahmed Sadeq & Hanan atia, & Ibrahim, Ahmed Aidid & Fakeeha, Anis Hamza & Singh, Sunit Kumar & Labhsetwar, Nitin K. & Shaikh, Hamid & Qasim, Shamsudeen O., 2019. "CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst," Renewable Energy, Elsevier, vol. 140(C), pages 658-667.
    10. Xia, Zhangxun & Sun, Ruili & Jing, Fenning & Wang, Suli & Sun, Hai & Sun, Gongquan, 2018. "Modeling and optimization of Scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells," Applied Energy, Elsevier, vol. 221(C), pages 239-248.
    11. Wanjie Song & Kang Peng & Wei Xu & Xiang Liu & Huaqing Zhang & Xian Liang & Bangjiao Ye & Hongjun Zhang & Zhengjin Yang & Liang Wu & Xiaolin Ge & Tongwen Xu, 2023. "Upscaled production of an ultramicroporous anion-exchange membrane enables long-term operation in electrochemical energy devices," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Ortiz-Vitoriano, N. & Bernuy-López, C. & Ruiz de Larramendi, I. & Knibbe, R. & Thydén, K. & Hauch, A. & Holtappels, P. & Rojo, T., 2013. "Optimizing solid oxide fuel cell cathode processing route for intermediate temperature operation," Applied Energy, Elsevier, vol. 104(C), pages 984-991.
    13. Zuoqing Liu & Yuesheng Bai & Hainan Sun & Daqin Guan & Wenhuai Li & Wei-Hsiang Huang & Chih-Wen Pao & Zhiwei Hu & Guangming Yang & Yinlong Zhu & Ran Ran & Wei Zhou & Zongping Shao, 2024. "Synergistic dual-phase air electrode enables high and durable performance of reversible proton ceramic electrochemical cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Xiaoning Wang & Lianming Zhao & Xuejin Li & Yong Liu & Yesheng Wang & Qiaofeng Yao & Jianping Xie & Qingzhong Xue & Zifeng Yan & Xun Yuan & Wei Xing, 2022. "Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Carton, J.G. & Olabi, A.G., 2017. "Three-dimensional proton exchange membrane fuel cell model: Comparison of double channel and open pore cellular foam flow plates," Energy, Elsevier, vol. 136(C), pages 185-195.
    16. Choi, Sung Min & An, Hyegsoon & Yoon, Kyung Joong & Kim, Byung-Kook & Lee, Hae-Weon & Son, Ji-Won & Kim, Hyoungchul & Shin, Dongwook & Ji, Ho-Il & Lee, Jong-Ho, 2019. "Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte," Applied Energy, Elsevier, vol. 233, pages 29-36.
    17. Yusung Kim & Sanghoon Lee & Gu Young Cho & Wonjong Yu & Yeageun Lee & Ikwhang Chang & Jong Dae Baek & Suk Won Cha, 2020. "Investigation of Reducing In-Plane Resistance of Nickel Oxide-Samaria-Doped Ceria Anode in Thin-Film Solid Oxide Fuel Cells," Energies, MDPI, vol. 13(8), pages 1-8, April.
    18. Fausto Cavallaro & Edmundas Kazimieras Zavadskas & Saulius Raslanas, 2016. "Evaluation of Combined Heat and Power (CHP) Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS," Sustainability, MDPI, vol. 8(6), pages 1-21, June.
    19. Kalmula, Babita & Kondapuram, Vijaya Raghavan, 2015. "Fuel processor – fuel cell integration: Systemic issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 409-418.
    20. Lukman Ahmed Omeiza & Abdalla M. Abdalla & Bo Wei & Anitha Dhanasekaran & Yathavan Subramanian & Shammya Afroze & Md Sumon Reza & Saifullah Abu Bakar & Abul Kalam Azad, 2023. "Nanostructured Electrocatalysts for Advanced Applications in Fuel Cells," Energies, MDPI, vol. 16(4), pages 1-22, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45060-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.