IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-44970-4.html
   My bibliography  Save this article

Pulse irradiation synthesis of metal chalcogenides on flexible substrates for enhanced photothermoelectric performance

Author

Listed:
  • Yuxuan Zhang

    (City University of Hong Kong)

  • You Meng

    (City University of Hong Kong)

  • Liqiang Wang

    (City University of Hong Kong)

  • Changyong Lan

    (University of Electronic Science and Technology of China)

  • Quan Quan

    (City University of Hong Kong)

  • Wei Wang

    (City University of Hong Kong)

  • Zhengxun Lai

    (City University of Hong Kong)

  • Weijun Wang

    (City University of Hong Kong)

  • Yezhan Li

    (City University of Hong Kong)

  • Di Yin

    (City University of Hong Kong)

  • Dengji Li

    (City University of Hong Kong)

  • Pengshan Xie

    (City University of Hong Kong)

  • Dong Chen

    (City University of Hong Kong)

  • Zhe Yang

    (City University of Hong Kong)

  • SenPo Yip

    (Kyushu University)

  • Yang Lu

    (The University of Hong Kong)

  • Chun-Yuen Wong

    (City University of Hong Kong)

  • Johnny C. Ho

    (City University of Hong Kong
    City University of Hong Kong
    Kyushu University)

Abstract

High synthesis temperatures and specific growth substrates are typically required to obtain crystalline or oriented inorganic functional thin films, posing a significant challenge for their utilization in large-scale, low-cost (opto-)electronic applications on conventional flexible substrates. Here, we explore a pulse irradiation synthesis (PIS) to prepare thermoelectric metal chalcogenide (e.g., Bi2Se3, SnSe2, and Bi2Te3) films on multiple polymeric substrates. The self-propagating combustion process enables PIS to achieve a synthesis temperature as low as 150 °C, with an ultrafast reaction completed within one second. Beyond the photothermoelectric (PTE) property, the thermal coupling between polymeric substrates and bismuth selenide films is also examined to enhance the PTE performance, resulting in a responsivity of 71.9 V/W and a response time of less than 50 ms at 1550 nm, surpassing most of its counterparts. This PIS platform offers a promising route for realizing flexible PTE or thermoelectric devices in an energy-, time-, and cost-efficient manner.

Suggested Citation

  • Yuxuan Zhang & You Meng & Liqiang Wang & Changyong Lan & Quan Quan & Wei Wang & Zhengxun Lai & Weijun Wang & Yezhan Li & Di Yin & Dengji Li & Pengshan Xie & Dong Chen & Zhe Yang & SenPo Yip & Yang Lu , 2024. "Pulse irradiation synthesis of metal chalcogenides on flexible substrates for enhanced photothermoelectric performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44970-4
    DOI: 10.1038/s41467-024-44970-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-44970-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-44970-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Max M. Shulaker & Gage Hills & Rebecca S. Park & Roger T. Howe & Krishna Saraswat & H.-S. Philip Wong & Subhasish Mitra, 2017. "Three-dimensional integration of nanotechnologies for computing and data storage on a single chip," Nature, Nature, vol. 547(7661), pages 74-78, July.
    2. Bocheng Lv & Yu Liu & Weidong Wu & Yan Xie & Jia-Lin Zhu & Yang Cao & Wanyun Ma & Ning Yang & Weidong Chu & Yi Jia & Jinquan Wei & Jia-Lin Sun, 2022. "Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Hiroaki Jinno & Kenjiro Fukuda & Xiaomin Xu & Sungjun Park & Yasuhito Suzuki & Mari Koizumi & Tomoyuki Yokota & Itaru Osaka & Kazuo Takimiya & Takao Someya, 2017. "Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications," Nature Energy, Nature, vol. 2(10), pages 780-785, October.
    4. Xianli Su & Fan Fu & Yonggao Yan & Gang Zheng & Tao Liang & Qiang Zhang & Xin Cheng & Dongwang Yang & Hang Chi & Xinfeng Tang & Qingjie Zhang & Ctirad Uher, 2014. "Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    5. Xiaowei Lu & Peng Jiang & Xinhe Bao, 2019. "Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    6. Mingjin Dai & Chongwu Wang & Bo Qiang & Yuhao Jin & Ming Ye & Fakun Wang & Fangyuan Sun & Xuran Zhang & Yu Luo & Qi Jie Wang, 2023. "Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soo Won Heo, 2020. "Vacuum-Free Fabrication Strategies for Nanostructure-Embedded Ultrathin Substrate in Flexible Polymer Solar Cells," Energies, MDPI, vol. 13(20), pages 1-10, October.
    2. Rui Liu & Guangkun Ren & Xing Tan & Yuanhua Lin & Cewen Nan, 2016. "Enhanced Thermoelectric Properties of Cu 3 SbSe 3 -Based Composites with Inclusion Phases," Energies, MDPI, vol. 9(10), pages 1-7, October.
    3. Hung-Chin Wu & Shayla Nikzad & Chenxin Zhu & Hongping Yan & Yang Li & Weijun Niu & James R. Matthews & Jie Xu & Naoji Matsuhisa & Prajwal Kammardi Arunachala & Reza Rastak & Christian Linder & Yu-Qing, 2023. "Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Wei Su & Xiao Li & Linhai Li & Dehua Yang & Futian Wang & Xiaojun Wei & Weiya Zhou & Hiromichi Kataura & Sishen Xie & Huaping Liu, 2023. "Chirality-dependent electrical transport properties of carbon nanotubes obtained by experimental measurement," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Bocheng Lv & Yu Liu & Weidong Wu & Yan Xie & Jia-Lin Zhu & Yang Cao & Wanyun Ma & Ning Yang & Weidong Chu & Yi Jia & Jinquan Wei & Jia-Lin Sun, 2022. "Local large temperature difference and ultra-wideband photothermoelectric response of the silver nanostructure film/carbon nanotube film heterostructure," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Sakeena Saifi & Xiao Xiao & Simin Cheng & Haotian Guo & Jinsheng Zhang & Peter Müller-Buschbaum & Guangmin Zhou & Xiaomin Xu & Hui-Ming Cheng, 2024. "An ultraflexible energy harvesting-storage system for wearable applications," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Yijun Li & Jianshi Tang & Bin Gao & Jian Yao & Anjunyi Fan & Bonan Yan & Yuchao Yang & Yue Xi & Yuankun Li & Jiaming Li & Wen Sun & Yiwei Du & Zhengwu Liu & Qingtian Zhang & Song Qiu & Qingwen Li & He, 2023. "Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Maosong Xie & Yueyang Jia & Chen Nie & Zuheng Liu & Alvin Tang & Shiquan Fan & Xiaoyao Liang & Li Jiang & Zhezhi He & Rui Yang, 2023. "Monolithic 3D integration of 2D transistors and vertical RRAMs in 1T–4R structure for high-density memory," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Sixing Xiong & Kenjiro Fukuda & Kyohei Nakano & Shinyoung Lee & Yutaro Sumi & Masahito Takakuwa & Daishi Inoue & Daisuke Hashizume & Baocai Du & Tomoyuki Yokota & Yinhua Zhou & Keisuke Tajima & Takao , 2024. "Waterproof and ultraflexible organic photovoltaics with improved interface adhesion," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Yun Meng & Lijie Chen & Yang Chen & Jieyun Shi & Zheng Zhang & Yiwen Wang & Fan Wu & Xingwu Jiang & Wei Yang & Li Zhang & Chaochao Wang & Xianfu Meng & Yelin Wu & Wenbo Bu, 2022. "Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Mingjin Dai & Chongwu Wang & Fangyuan Sun & Qi Jie Wang, 2024. "On-chip photodetection of angular momentums of vortex structured light," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Fernando Aguirre & Abu Sebastian & Manuel Gallo & Wenhao Song & Tong Wang & J. Joshua Yang & Wei Lu & Meng-Fan Chang & Daniele Ielmini & Yuchao Yang & Adnan Mehonic & Anthony Kenyon & Marco A. Villena, 2024. "Hardware implementation of memristor-based artificial neural networks," Nature Communications, Nature, vol. 15(1), pages 1-40, December.
    13. Wenhui Wang & Ke Li & Jun Lan & Mei Shen & Zhongrui Wang & Xuewei Feng & Hongyu Yu & Kai Chen & Jiamin Li & Feichi Zhou & Longyang Lin & Panpan Zhang & Yida Li, 2023. "CMOS backend-of-line compatible memory array and logic circuitries enabled by high performance atomic layer deposited ZnO thin-film transistor," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-44970-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.