IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p816-d80464.html
   My bibliography  Save this article

Enhanced Thermoelectric Properties of Cu 3 SbSe 3 -Based Composites with Inclusion Phases

Author

Listed:
  • Rui Liu

    (State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China)

  • Guangkun Ren

    (State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China)

  • Xing Tan

    (State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China)

  • Yuanhua Lin

    (State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China)

  • Cewen Nan

    (State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China)

Abstract

Cu 3 SbSe 3 -based composites have been prepared by self-propagating high-temperature synthesis (SHS) combined with spark plasma sintering (SPS) technology. Phase composition and microstructure analysis indicate that the obtained samples are mainly composed of Cu 3 SbSe 3 phase and CuSbSe 2 /Cu 2− x Se secondary phases. Our results show that the existence of Cu 2− x Se phase can clearly enhance the electrical conductivity of the composites (~16 S/cm), which is 2.5 times higher than the pure phase. The thermal conductivity can remain at about 0.30 W·m −1 ·K −1 at 653 K. A maximum ZT (defined as ZT = S 2 σ Τ /κ, where S , σ, Τ , κ are the Seebeck coefficient, electrical conductivity, absolute temperature and total thermal conductivity) of the sample SPS 633 can be 0.42 at 653 K, which is 60% higher than the previously reported values. Our results indicate that the composite structure is an effective method to enhance the performance of Cu 3 SbSe 3 .

Suggested Citation

  • Rui Liu & Guangkun Ren & Xing Tan & Yuanhua Lin & Cewen Nan, 2016. "Enhanced Thermoelectric Properties of Cu 3 SbSe 3 -Based Composites with Inclusion Phases," Energies, MDPI, vol. 9(10), pages 1-7, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:816-:d:80464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xianli Su & Fan Fu & Yonggao Yan & Gang Zheng & Tao Liang & Qiang Zhang & Xin Cheng & Dongwang Yang & Hang Chi & Xinfeng Tang & Qingjie Zhang & Ctirad Uher, 2014. "Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    2. Li-Dong Zhao & Shih-Han Lo & Yongsheng Zhang & Hui Sun & Gangjian Tan & Ctirad Uher & C. Wolverton & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2014. "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals," Nature, Nature, vol. 508(7496), pages 373-377, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi Li & Wenhao Li & Zhen Chen, 2017. "Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant," Energies, MDPI, vol. 10(10), pages 1-15, September.
    2. Yihua Zhang & Guyang Peng & Shuankui Li & Haijun Wu & Kaidong Chen & Jiandong Wang & Zhihao Zhao & Tu Lyu & Yuan Yu & Chaohua Zhang & Yang Zhang & Chuansheng Ma & Shengwu Guo & Xiangdong Ding & Jun Su, 2024. "Phase interface engineering enables state-of-the-art half-Heusler thermoelectrics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Yulong Li & Xun Shi & Dudi Ren & Jikun Chen & Lidong Chen, 2015. "Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe," Energies, MDPI, vol. 8(7), pages 1-11, June.
    5. Hongkun Lv & Guoneng Li & Youqu Zheng & Jiangen Hu & Jian Li, 2018. "Compact Water-Cooled Thermoelectric Generator (TEG) Based on a Portable Gas Stove," Energies, MDPI, vol. 11(9), pages 1-19, August.
    6. Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).
    7. Vaithinathan Karthikeyan & James Utama Surjadi & Xiaocui Li & Rong Fan & Vaskuri C. S. Theja & Wen Jung Li & Yang Lu & Vellaisamy A. L. Roy, 2023. "Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Wu, Yongjia & Yang, Jihui & Chen, Shikui & Zuo, Lei, 2018. "Thermo-element geometry optimization for high thermoelectric efficiency," Energy, Elsevier, vol. 147(C), pages 672-680.
    9. Paribesh Acharyya & Tanmoy Ghosh & Koushik Pal & Kewal Singh Rana & Moinak Dutta & Diptikanta Swain & Martin Etter & Ajay Soni & Umesh V. Waghmare & Kanishka Biswas, 2022. "Glassy thermal conductivity in Cs3Bi2I6Cl3 single crystal," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Zhu, Lei & Li, Huaqi & Chen, Sen & Tian, Xiaoyan & Kang, Xiaoya & Jiang, Xinbiao & Qiu, Suizheng, 2020. "Optimization analysis of a segmented thermoelectric generator based on genetic algorithm," Renewable Energy, Elsevier, vol. 156(C), pages 710-718.
    11. Demeke, Wabi & Ryu, Byungki & Ryu, Seunghwa, 2024. "Machine learning-based optimization of segmented thermoelectric power generators using temperature-dependent performance properties," Applied Energy, Elsevier, vol. 355(C).
    12. Yong Yu & Xiao Xu & Yan Wang & Baohai Jia & Shan Huang & Xiaobin Qiang & Bin Zhu & Peijian Lin & Binbin Jiang & Shixuan Liu & Xia Qi & Kefan Pan & Di Wu & Haizhou Lu & Michel Bosman & Stephen J. Penny, 2022. "Tunable quantum gaps to decouple carrier and phonon transport leading to high-performance thermoelectrics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Zhang, Yaxi & Zhu, Na & Zhao, Xudong & Luo, Zhenyu & Hu, Pingfang & Lei, Fei, 2023. "Energy performance and enviroeconomic analysis of a novel PV-MCHP-TEG system," Energy, Elsevier, vol. 274(C).
    14. Fang, Juan & Dong, Hao & Huo, Hailong & Yi, Xiaoping & Wen, Zhi & Liu, Qibin & Liu, Xunliang, 2023. "Thermodynamic performance of solar full-spectrum electricity generation system integrating photovoltaic cell with thermally-regenerative ammonia battery," Applied Energy, Elsevier, vol. 332(C).
    15. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    16. Yuxuan Zhang & You Meng & Liqiang Wang & Changyong Lan & Quan Quan & Wei Wang & Zhengxun Lai & Weijun Wang & Yezhan Li & Di Yin & Dengji Li & Pengshan Xie & Dong Chen & Zhe Yang & SenPo Yip & Yang Lu , 2024. "Pulse irradiation synthesis of metal chalcogenides on flexible substrates for enhanced photothermoelectric performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Svyatoslav Yatsyshyn & Oleksandra Hotra & Pylyp Skoropad & Tetiana Bubela & Mykola Mykyichuk & Orest Kochan & Oksana Boyko, 2023. "Investigating Thermoelectric Batteries Based on Nanostructured Materials," Energies, MDPI, vol. 16(9), pages 1-11, May.
    18. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    19. Huang, Shaolin & Yang, Hao & Li, Yanan & Guo, Zhe & Zhang, Qiang & Cai, Jianfeng & Wu, Jiehua & Tan, Xiaojian & Liu, Guoqiang & Song, Kun & Jiang, Jun, 2023. "Optimizing GeTe-based thermoelectric generator for low-grade heat recovery," Applied Energy, Elsevier, vol. 349(C).
    20. Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Effect of air gap on a novel hybrid photovoltaic/thermal and thermally regenerative electrochemical cycle system," Applied Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:816-:d:80464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.