IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-39071-7.html
   My bibliography  Save this article

Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity

Author

Listed:
  • Mingjin Dai

    (Nanyang Technological University)

  • Chongwu Wang

    (Nanyang Technological University)

  • Bo Qiang

    (Nanyang Technological University)

  • Yuhao Jin

    (Nanyang Technological University)

  • Ming Ye

    (Nanyang Technological University)

  • Fakun Wang

    (Nanyang Technological University)

  • Fangyuan Sun

    (Nanyang Technological University)

  • Xuran Zhang

    (Nanyang Technological University)

  • Yu Luo

    (Nanyang Technological University)

  • Qi Jie Wang

    (Nanyang Technological University
    Nanyang Technological University)

Abstract

Filter-free miniaturized polarization-sensitive photodetectors have important applications in the next-generation on-chip polarimeters. However, their polarization sensitivity is thus far limited by the intrinsic low diattenuation and inefficient photon-to-electron conversion. Here, we implement experimentally a miniaturized detector based on one-dimensional tellurium nanoribbon, which can significantly improve the photothermoelectric responses by translating the polarization-sensitive absorption into a large temperature gradient together with the finite-size effect of a perfect plasmonic absorber. Our devices exhibit a zero-bias responsivity of 410 V/W and an ultrahigh polarization ratio (2.5 × 104), as well as a peak polarization angle sensitivity of 7.10 V/W•degree, which is one order of magnitude higher than those reported in the literature. Full linear polarimetry detection is also achieved with the proposed device in a simple geometrical configuration. Polarization-coded communication and optical strain measurement are demonstrated showing the great potential of the proposed devices. Our work presents a feasible solution for miniaturized room-temperature infrared photodetectors with ultrahigh polarization sensitivity.

Suggested Citation

  • Mingjin Dai & Chongwu Wang & Bo Qiang & Yuhao Jin & Ming Ye & Fakun Wang & Fangyuan Sun & Xuran Zhang & Yu Luo & Qi Jie Wang, 2023. "Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39071-7
    DOI: 10.1038/s41467-023-39071-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-39071-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-39071-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. By Yongzhe Zhang & Tao Liu & Bo Meng & Xiaohui Li & Guozhen Liang & Xiaonan Hu & Qi Jie Wang, 2013. "Broadband high photoresponse from pure monolayer graphene photodetector," Nature Communications, Nature, vol. 4(1), pages 1-11, October.
    2. Sebastián Castilla & Ioannis Vangelidis & Varun-Varma Pusapati & Jordan Goldstein & Marta Autore & Tetiana Slipchenko & Khannan Rajendran & Seyoon Kim & Kenji Watanabe & Takashi Taniguchi & Luis Martí, 2020. "Plasmonic antenna coupling to hyperbolic phonon-polaritons for sensitive and fast mid-infrared photodetection with graphene," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Siqi Lin & Wen Li & Zhiwei Chen & Jiawen Shen & Binghui Ge & Yanzhong Pei, 2016. "Tellurium as a high-performance elemental thermoelectric," Nature Communications, Nature, vol. 7(1), pages 1-6, April.
    4. Daniele Palaferri & Yanko Todorov & Azzurra Bigioli & Alireza Mottaghizadeh & Djamal Gacemi & Allegra Calabrese & Angela Vasanelli & Lianhe Li & A. Giles Davies & Edmund H. Linfield & Filippos Kapsali, 2018. "Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers," Nature, Nature, vol. 556(7699), pages 85-88, April.
    5. Xuechao Yu & Yangyang Li & Xiaonan Hu & Daliang Zhang & Ye Tao & Zhixiong Liu & Yongmin He & Md. Azimul Haque & Zheng Liu & Tom Wu & Qi Jie Wang, 2018. "Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    6. Giriraj Jnawali & Yuan Xiang & Samuel M. Linser & Iraj Abbasian Shojaei & Ruoxing Wang & Gang Qiu & Chao Lian & Bryan M. Wong & Wenzhuo Wu & Peide D. Ye & Yongsheng Leng & Howard E. Jackson & Leigh M., 2020. "Ultrafast photoinduced band splitting and carrier dynamics in chiral tellurium nanosheets," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    7. Xuechao Yu & Peng Yu & Di Wu & Bahadur Singh & Qingsheng Zeng & Hsin Lin & Wu Zhou & Junhao Lin & Kazu Suenaga & Zheng Liu & Qi Jie Wang, 2018. "Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    8. Mingjin Dai & Chongwu Wang & Bo Qiang & Fakun Wang & Ming Ye & Song Han & Yu Luo & Qi Jie Wang, 2022. "On-chip mid-infrared photothermoelectric detectors for full-Stokes detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Lei Tong & Xinyu Huang & Peng Wang & Lei Ye & Meng Peng & Licong An & Qiaodong Sun & Yong Zhang & Guoming Yang & Zheng Li & Fang Zhong & Fang Wang & Yixiu Wang & Maithilee Motlag & Wenzhuo Wu & Gary J, 2020. "Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuaiqin Wu & Jie Deng & Xudong Wang & Jing Zhou & Hanxue Jiao & Qianru Zhao & Tie Lin & Hong Shen & Xiangjian Meng & Yan Chen & Junhao Chu & Jianlu Wang, 2024. "Polarization photodetectors with configurable polarity transition enabled by programmable ferroelectric-doping patterns," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Mingjin Dai & Chongwu Wang & Fangyuan Sun & Qi Jie Wang, 2024. "On-chip photodetection of angular momentums of vortex structured light," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Yuxuan Zhang & You Meng & Liqiang Wang & Changyong Lan & Quan Quan & Wei Wang & Zhengxun Lai & Weijun Wang & Yezhan Li & Di Yin & Dengji Li & Pengshan Xie & Dong Chen & Zhe Yang & SenPo Yip & Yang Lu , 2024. "Pulse irradiation synthesis of metal chalcogenides on flexible substrates for enhanced photothermoelectric performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linlin Li & Shufang Zhao & Wenhao Ran & Zhexin Li & Yongxu Yan & Bowen Zhong & Zheng Lou & Lili Wang & Guozhen Shen, 2022. "Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Hao Jiang & Jintao Fu & Jingxuan Wei & Shaojuan Li & Changbin Nie & Feiying Sun & Qing Yang Steve Wu & Mingxiu Liu & Zhaogang Dong & Xingzhan Wei & Weibo Gao & Cheng-Wei Qiu, 2024. "Synergistic-potential engineering enables high-efficiency graphene photodetectors for near- to mid-infrared light," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Stefan M. Koepfli & Michael Baumann & Robin Gadola & Shadi Nashashibi & Yesim Koyaz & Daniel Rieben & Arif Can Güngör & Michael Doderer & Killian Keller & Yuriy Fedoryshyn & Juerg Leuthold, 2024. "Controlling photothermoelectric directional photocurrents in graphene with over 400 GHz bandwidth," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. J. Álvarez-Cuervo & M. Obst & S. Dixit & G. Carini & A. I. F. Tresguerres-Mata & C. Lanza & E. Terán-García & G. Álvarez-Pérez & L. F. Álvarez-Tomillo & K. Diaz-Granados & R. Kowalski & A. S. Senerath, 2024. "Unidirectional ray polaritons in twisted asymmetric stacks," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Hamza Dely & Mahdieh Joharifar & Laureline Durupt & Armands Ostrovskis & Richard Schatz & Thomas Bonazzi & Gregory Maisons & Djamal Gacemi & Toms Salgals & Lu Zhang & Sandis Spolitis & Yan-Ting Sun & , 2024. "Unipolar quantum optoelectronics for high speed direct modulation and transmission in 8–14 µm atmospheric window," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Mingjin Dai & Chongwu Wang & Bo Qiang & Fakun Wang & Ming Ye & Song Han & Yu Luo & Qi Jie Wang, 2022. "On-chip mid-infrared photothermoelectric detectors for full-Stokes detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Wenhao Ran & Zhihui Ren & Pan Wang & Yongxu Yan & Kai Zhao & Linlin Li & Zhexin Li & Lili Wang & Juehan Yang & Zhongming Wei & Zheng Lou & Guozhen Shen, 2021. "Integrated polarization-sensitive amplification system for digital information transmission," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    8. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. You Meng & Xiaocui Li & Xiaolin Kang & Wanpeng Li & Wei Wang & Zhengxun Lai & Weijun Wang & Quan Quan & Xiuming Bu & SenPo Yip & Pengshan Xie & Dong Chen & Dengji Li & Fei Wang & Chi-Fung Yeung & Chan, 2023. "Van der Waals nanomesh electronics on arbitrary surfaces," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Jing Pan & Yiming Wu & Xiujuan Zhang & Jinhui Chen & Jinwen Wang & Shuiling Cheng & Xiaofeng Wu & Xiaohong Zhang & Jiansheng Jie, 2022. "Anisotropic charge trapping in phototransistors unlocks ultrasensitive polarimetry for bionic navigation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Han Gao & Chao Ding & Jaeseok Son & Yangyu Zhu & Mingzheng Wang & Zhi Gen Yu & Jianing Chen & Le Wang & Scott A. Chambers & Tae Won Noh & Mingwen Zhao & Yangyang Li, 2022. "Ultra-flat and long-lived plasmons in a strongly correlated oxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Kun Huang & Jianan Fang & Ming Yan & E Wu & Heping Zeng, 2022. "Wide-field mid-infrared single-photon upconversion imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Kaja Bilińska & Dominika Goles & Maciej J. Winiarski, 2023. "A theoretical investigation of 18-electron half-Heusler tellurides in terms of potential thermoelectric value," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(10), pages 1-8, October.
    17. Yaru Gong & Wei Dou & Bochen Lu & Xuemei Zhang & He Zhu & Pan Ying & Qingtang Zhang & Yuqi Liu & Yanan Li & Xinqi Huang & Muhammad Faisal Iqbal & Shihua Zhang & Di Li & Yongsheng Zhang & Haijun Wu & G, 2024. "Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Yinqi Wang & Kun Huang & Jianan Fang & Ming Yan & E Wu & Heping Zeng, 2023. "Mid-infrared single-pixel imaging at the single-photon level," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Mingjin Dai & Chongwu Wang & Fangyuan Sun & Qi Jie Wang, 2024. "On-chip photodetection of angular momentums of vortex structured light," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Junchao Ma & Bin Cheng & Lin Li & Zipu Fan & Haimen Mu & Jiawei Lai & Xiaoming Song & Dehong Yang & Jinluo Cheng & Zhengfei Wang & Changgan Zeng & Dong Sun, 2022. "Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39071-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.