IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5375-d428523.html
   My bibliography  Save this article

Vacuum-Free Fabrication Strategies for Nanostructure-Embedded Ultrathin Substrate in Flexible Polymer Solar Cells

Author

Listed:
  • Soo Won Heo

    (Nanomaterials and Nanotechnology Center, Electronic Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET), 101 Soho-ro, Jinju-si, Gyeongsangnam-do 52851, Korea)

Abstract

In this paper, we discuss a method for fabricating an ultrathin polymer substrate with one-dimensional nanograting patterns to improve the power conversion efficiency (PCE) of ultrathin polymer solar cells (PSCs) and suppress the dependence on the incident angle of light. Because the fabricating process of the ultrathin polymer substrate was carried out using a solution process, it can be manufactured in a large area, and the PCE of the patterned ultrathin substrate-based PSC is improved by 8.9% compared to the non-patterned device. In addition, triple-patterned ultrathin PSCs incorporating the same nanograting pattern as the substrate were fabricated in the electron transport (ZnO) layer and the photoactive layer (PBDTTT-OFT and PC 71 BM mixture (ratio-1: 1.5)) to achieve PCE of 10.26%. Thanks to the nanograting pattern introduced in the substrate, ZnO layer, and photoactive layer, it was possible to minimize the PCE change according to the incident angle of light. Moreover, we performed 1000 cycles of compression/relaxation tests to evaluate the mechanical properties of the triple-patterned ultrathin PSCs, after which the PCE remained at 71% of the initial PCE.

Suggested Citation

  • Soo Won Heo, 2020. "Vacuum-Free Fabrication Strategies for Nanostructure-Embedded Ultrathin Substrate in Flexible Polymer Solar Cells," Energies, MDPI, vol. 13(20), pages 1-10, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5375-:d:428523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Jinno & Kenjiro Fukuda & Xiaomin Xu & Sungjun Park & Yasuhito Suzuki & Mari Koizumi & Tomoyuki Yokota & Itaru Osaka & Kazuo Takimiya & Takao Someya, 2017. "Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications," Nature Energy, Nature, vol. 2(10), pages 780-785, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hung-Chin Wu & Shayla Nikzad & Chenxin Zhu & Hongping Yan & Yang Li & Weijun Niu & James R. Matthews & Jie Xu & Naoji Matsuhisa & Prajwal Kammardi Arunachala & Reza Rastak & Christian Linder & Yu-Qing, 2023. "Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Sixing Xiong & Kenjiro Fukuda & Kyohei Nakano & Shinyoung Lee & Yutaro Sumi & Masahito Takakuwa & Daishi Inoue & Daisuke Hashizume & Baocai Du & Tomoyuki Yokota & Yinhua Zhou & Keisuke Tajima & Takao , 2024. "Waterproof and ultraflexible organic photovoltaics with improved interface adhesion," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yuxuan Zhang & You Meng & Liqiang Wang & Changyong Lan & Quan Quan & Wei Wang & Zhengxun Lai & Weijun Wang & Yezhan Li & Di Yin & Dengji Li & Pengshan Xie & Dong Chen & Zhe Yang & SenPo Yip & Yang Lu , 2024. "Pulse irradiation synthesis of metal chalcogenides on flexible substrates for enhanced photothermoelectric performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Sakeena Saifi & Xiao Xiao & Simin Cheng & Haotian Guo & Jinsheng Zhang & Peter Müller-Buschbaum & Guangmin Zhou & Xiaomin Xu & Hui-Ming Cheng, 2024. "An ultraflexible energy harvesting-storage system for wearable applications," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5375-:d:428523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.