IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0114749.html
   My bibliography  Save this article

FindFoci: A Focus Detection Algorithm with Automated Parameter Training That Closely Matches Human Assignments, Reduces Human Inconsistencies and Increases Speed of Analysis

Author

Listed:
  • Alex D Herbert
  • Antony M Carr
  • Eva Hoffmann

Abstract

Accurate and reproducible quantification of the accumulation of proteins into foci in cells is essential for data interpretation and for biological inferences. To improve reproducibility, much emphasis has been placed on the preparation of samples, but less attention has been given to reporting and standardizing the quantification of foci. The current standard to quantitate foci in open-source software is to manually determine a range of parameters based on the outcome of one or a few representative images and then apply the parameter combination to the analysis of a larger dataset. Here, we demonstrate the power and utility of using machine learning to train a new algorithm (FindFoci) to determine optimal parameters. FindFoci closely matches human assignments and allows rapid automated exploration of parameter space. Thus, individuals can train the algorithm to mirror their own assignments and then automate focus counting using the same parameters across a large number of images. Using the training algorithm to match human assignments of foci, we demonstrate that applying an optimal parameter combination from a single image is not broadly applicable to analysis of other images scored by the same experimenter or by other experimenters. Our analysis thus reveals wide variation in human assignment of foci and their quantification. To overcome this, we developed training on multiple images, which reduces the inconsistency of using a single or a few images to set parameters for focus detection. FindFoci is provided as an open-source plugin for ImageJ.

Suggested Citation

  • Alex D Herbert & Antony M Carr & Eva Hoffmann, 2014. "FindFoci: A Focus Detection Algorithm with Automated Parameter Training That Closely Matches Human Assignments, Reduces Human Inconsistencies and Increases Speed of Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-33, December.
  • Handle: RePEc:plo:pone00:0114749
    DOI: 10.1371/journal.pone.0114749
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114749
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0114749&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0114749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William S Sanders & C Ian Johnston & Susan M Bridges & Shane C Burgess & Kenneth O Willeford, 2011. "Prediction of Cell Penetrating Peptides by Support Vector Machines," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-12, July.
    2. Moritz Helmstaedter & Kevin L. Briggman & Srinivas C. Turaga & Viren Jain & H. Sebastian Seung & Winfried Denk, 2013. "Connectomic reconstruction of the inner plexiform layer in the mouse retina," Nature, Nature, vol. 500(7461), pages 168-174, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Hohmann & Jacqueline Kessler & Dirk Vordermark & Faramarz Dehghani, 2020. "Evaluation of machine learning models for automatic detection of DNA double strand breaks after irradiation using a γH2AX foci assay," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Giuseppe Maccari & Mariagrazia Di Luca & Riccardo Nifosí & Francesco Cardarelli & Giovanni Signore & Claudia Boccardi & Angelo Bifone, 2013. "Antimicrobial Peptides Design by Evolutionary Multiobjective Optimization," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    3. Antoine Allard & M Ángeles Serrano, 2020. "Navigable maps of structural brain networks across species," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    4. Andrew Jo & Sercan Deniz & Jian Xu & Robert M. Duvoisin & Steven H. DeVries & Yongling Zhu, 2023. "A sign-inverted receptive field of inhibitory interneurons provides a pathway for ON-OFF interactions in the retina," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Andrew Jo & Sercan Deniz & Suraj Cherian & Jian Xu & Daiki Futagi & Steven H. DeVries & Yongling Zhu, 2023. "Modular interneuron circuits control motion sensitivity in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Georgia Melagraki & Evangelos Ntougkos & Vagelis Rinotas & Christos Papaneophytou & Georgios Leonis & Thomas Mavromoustakos & George Kontopidis & Eleni Douni & Antreas Afantitis & George Kollias, 2017. "Cheminformatics-aided discovery of small-molecule Protein-Protein Interaction (PPI) dual inhibitors of Tumor Necrosis Factor (TNF) and Receptor Activator of NF-κB Ligand (RANKL)," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-27, April.
    7. Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
    8. Chad P. Grabner & Daiki Futagi & Jun Shi & Vytas Bindokas & Katsunori Kitano & Eric A. Schwartz & Steven H. DeVries, 2023. "Mechanisms of simultaneous linear and nonlinear computations at the mammalian cone photoreceptor synapse," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Sofie Stalmans & Evelien Wynendaele & Nathalie Bracke & Bert Gevaert & Matthias D’Hondt & Kathelijne Peremans & Christian Burvenich & Bart De Spiegeleer, 2013. "Chemical-Functional Diversity in Cell-Penetrating Peptides," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
    10. David Swygart & Wan-Qing Yu & Shunsuke Takeuchi & Rachel O. L. Wong & Gregory W. Schwartz, 2024. "A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Héctor Acarón Ledesma & Jennifer Ding & Swen Oosterboer & Xiaolin Huang & Qiang Chen & Sui Wang & Michael Z. Lin & Wei Wei, 2024. "Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst amacrine cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
    13. Adam Mani & Xinzhu Yang & Tiffany A. Zhao & Megan L. Leyrer & Daniel Schreck & David M. Berson, 2023. "A circuit suppressing retinal drive to the optokinetic system during fast image motion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
    15. Ilya Belevich & Merja Joensuu & Darshan Kumar & Helena Vihinen & Eija Jokitalo, 2016. "Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets," PLOS Biology, Public Library of Science, vol. 14(1), pages 1-13, January.
    16. Karl Friedrichsen & Jen-Chun Hsiang & Chin-I Lin & Liam McCoy & Katia Valkova & Daniel Kerschensteiner & Josh L. Morgan, 2024. "Subcellular pathways through VGluT3-expressing mouse amacrine cells provide locally tuned object-motion-selective signals in the retina," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0114749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.