IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i7d10.1007_s10845-017-1380-9.html
   My bibliography  Save this article

A data-driven method based on deep belief networks for backlash error prediction in machining centers

Author

Listed:
  • Zhe Li

    (Norwegian University of Science and Technology)

  • Yi Wang

    (Plymouth University)

  • Kesheng Wang

    (Norwegian University of Science and Technology)

Abstract

Backlash error occurs in a machining center may lead to a series of changes in the geometry of the components and subsequently deteriorate the overall performance of the equipment. Due to the uncertainty of mechanical wear between kinematic pairs, it is challenging to predict backlash error through physical models directly. An alternative method is to leverage data-driven models to map the degradation. This paper proposes a data-driven method for backlash error predication through Deep Belief Network (DBN). The proposed method focuses on the assessment of both current and future geometric errors for backlash error prediction and subsequent maintenance in machining centers. During the process of prognosis, a DBN via stacking Restricted Boltzmann Machines is constructed for backlash error prediction. Energy-based models enable DBN to mine information hidden behind highly coupled inputs, which makes DBN a feasible method for fault diagnosis and prognosis when the target condition is beyond the historical data. In the experiment, to confirm the effectiveness of deep learning for backlash error prediction, similar popular regression methods, including Support Vector Machine Regression and Back Propagation Neural Network, are employed to present a comprehensive comparison in both diagnosis and prognosis. The experimental results show that the performances of all these regression methods are acceptable in the diagnostic stage. In the prognostic stage, DBN demonstrates its superiority and significantly outperforms the other models for backlash error prediction in machining centers.

Suggested Citation

  • Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-017-1380-9
    DOI: 10.1007/s10845-017-1380-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-017-1380-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-017-1380-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mosallam & K. Medjaher & N. Zerhouni, 2016. "Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 1037-1048, October.
    2. Roman Stryczek, 2016. "A metaheuristic for fast machining error compensation," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1209-1220, December.
    3. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    4. Moritz Helmstaedter & Kevin L. Briggman & Srinivas C. Turaga & Viren Jain & H. Sebastian Seung & Winfried Denk, 2013. "Connectomic reconstruction of the inner plexiform layer in the mouse retina," Nature, Nature, vol. 500(7461), pages 168-174, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Hagedorn & Johannes Huegle & Rainer Schlosser, 2022. "Understanding unforeseen production downtimes in manufacturing processes using log data-driven causal reasoning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2027-2043, October.
    2. Mohamed Elhefnawy & Ahmed Ragab & Mohamed-Salah Ouali, 2022. "Fault classification in the process industry using polygon generation and deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1531-1544, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianhui Wu & Keqin Ding & Biqing Huang, 2020. "Approach for fault prognosis using recurrent neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1621-1633, October.
    2. Antonio Caputi & Davide Russo, 2021. "The optimization of the control logic of a redundant six axis milling machine," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1441-1453, June.
    3. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    4. Jie Yang & Shaowen Lu & Liangyong Wang, 2020. "Fused magnesia manufacturing process: a survey," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 327-350, February.
    5. Merainani, Boualem & Laddada, Sofiane & Bechhoefer, Eric & Chikh, Mohamed Abdessamed Ait & Benazzouz, Djamel, 2022. "An integrated methodology for estimating the remaining useful life of high-speed wind turbine shaft bearings with limited samples," Renewable Energy, Elsevier, vol. 182(C), pages 1141-1151.
    6. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    7. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    8. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Maximilian Zarte & Agnes Pechmann & Isabel L. Nunes, 2022. "Problems, Needs, and Challenges of a Sustainability-Based Production Planning," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    10. Shanhe Lou & Yixiong Feng & Hao Zheng & Yicong Gao & Jianrong Tan, 2020. "Data-driven customer requirements discernment in the product lifecycle management via intuitionistic fuzzy sets and electroencephalogram," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1721-1736, October.
    11. Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
    12. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    13. Wang, Di & He, Bin & Hu, Zhimu, 2024. "Financial technology and firm productivity: Evidence from Chinese listed enterprises," Finance Research Letters, Elsevier, vol. 63(C).
    14. Hua-Xi Zhou & Chang-Guang Zhou & Hu-Tian Feng, 2023. "An integrated lifetime prediction method for double-nut ball screws subject to preload loss failure mode," Journal of Risk and Reliability, , vol. 237(6), pages 1248-1258, December.
    15. Antoine Allard & M Ángeles Serrano, 2020. "Navigable maps of structural brain networks across species," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    16. Julian Senoner & Torbjørn Netland & Stefan Feuerriegel, 2022. "Using Explainable Artificial Intelligence to Improve Process Quality: Evidence from Semiconductor Manufacturing," Management Science, INFORMS, vol. 68(8), pages 5704-5723, August.
    17. Vedpal Arya & S. G. Deshmukh & Naresh Bhatnagar, 2019. "Product quality in an inclusive manufacturing system: some considerations," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2871-2884, December.
    18. Senthil Sundaramoorthy & Dipti Kamath & Sachin Nimbalkar & Christopher Price & Thomas Wenning & Joseph Cresko, 2023. "Energy Efficiency as a Foundational Technology Pillar for Industrial Decarbonization," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    19. Pai Zheng & Xun Xu & Chun-Hsien Chen, 2020. "A data-driven cyber-physical approach for personalised smart, connected product co-development in a cloud-based environment," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 3-18, January.
    20. Barbara Aquilani & Michela Piccarozzi & Tindara Abbate & Anna Codini, 2020. "The Role of Open Innovation and Value Co-creation in the Challenging Transition from Industry 4.0 to Society 5.0: Toward a Theoretical Framework," Sustainability, MDPI, vol. 12(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-017-1380-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.